| 注册
首页|期刊导航|四川轻化工大学学报(自然科学版)|基于ISSA-BP神经网络的光伏阵列故障诊断方法

基于ISSA-BP神经网络的光伏阵列故障诊断方法

文力 谭功全 毛国斌 王旭东 庞宏杰

四川轻化工大学学报(自然科学版)2025,Vol.38Issue(1):57-68,12.
四川轻化工大学学报(自然科学版)2025,Vol.38Issue(1):57-68,12.DOI:10.11863/j.suse.2025.01.07

基于ISSA-BP神经网络的光伏阵列故障诊断方法

Fault Diagnosis Method for Photovoltaic Array Based on ISSA-BP Neural Network

文力 1谭功全 1毛国斌 1王旭东 1庞宏杰1

作者信息

  • 1. 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000
  • 折叠

摘要

Abstract

In response to the issues of slow convergence speed,susceptibility to local optima,and low accuracy in fault diagnosis of photovoltaic arrays using back propagation neural network(BPNN),an improved sparrow search algorithm(ISSA-BP)for optimizing the weights and thresholds of the BP neural network has been proposed.Firstly,the Cubic chaotic mapping is employed to enhance the spatial coverage of the initial population positions.Subsequently,an inertia weight is introduced among the discoverers to accelerate convergence speed and strengthen local search capabilities.Finally,the diversity is maintained by dynamically adjusting the number of scouts,enhancing global search capabilities.The MATLAB/Simulink simulation model is utilized to obtain four feature parameters,namely short-circuit current,open-circuit voltage,maximum power point current,and maximum power point voltage,under normal and fault conditions in a photovoltaic array,which is input into six fault diagnosis models.Comparative verification with traditional BP,GA-BP,PSO-BP,SSA-BP,and SOA-SVM models is conducted.The experimental results demonstrate that the ISSA-BP model not only rapidly escapes local optima and accelerates convergence speed but also achieves a fault diagnosis accuracy of 97.5%.

关键词

光伏阵列/故障诊断/反向传播神经网络/故障特征提取/改进麻雀搜索算法

Key words

photovoltaic array/fault diagnosis/back propagation neural network/fault feature extraction/improved sparrow search algorithm

分类

信息技术与安全科学

引用本文复制引用

文力,谭功全,毛国斌,王旭东,庞宏杰..基于ISSA-BP神经网络的光伏阵列故障诊断方法[J].四川轻化工大学学报(自然科学版),2025,38(1):57-68,12.

基金项目

人工智能四川省重点实验室科研项目(2019RYJ08) (2019RYJ08)

四川轻化工大学学报(自然科学版)

2096-7543

访问量0
|
下载量0
段落导航相关论文