| 注册
首页|期刊导航|综合智慧能源|基于K-means聚类的LSTM-SVR-DE光伏功率组合预测

基于K-means聚类的LSTM-SVR-DE光伏功率组合预测

张元曦 杨国华 杨娜 李祯 马鑫 刘浩睿 南少帅

综合智慧能源2025,Vol.47Issue(2):71-78,8.
综合智慧能源2025,Vol.47Issue(2):71-78,8.DOI:10.3969/j.issn.2097-0706.2025.02.007

基于K-means聚类的LSTM-SVR-DE光伏功率组合预测

Photovoltaic power prediction based on K-means clustering and the LSTM-SVR-DE model

张元曦 1杨国华 1杨娜 1李祯 1马鑫 1刘浩睿 1南少帅1

作者信息

  • 1. 宁夏大学 电子与电气工程学院,银川 750021
  • 折叠

摘要

Abstract

To improve the accuracy of photovoltaic power prediction,a combined prediction model based on Long Short-Term Memory(LSTM)neural networks and Support Vector Regression(SVR)was proposed.Both the LSTM and SVR models were used separately to predict photovoltaic power.On this basis,a Stacking ensemble strategy was employed to linearly combine the predictions of these two models,with the Differential Evolution(DE)algorithm optimizing the weight coefficients.Simulations and comparative analyses were conducted using real data from a photovoltaic power station in Ningxia.The results showed that the proposed method reduced prediction errors by approximately 70%compared to the LSTM and SVR models.

关键词

K-means聚类/LSTM神经网络/支持向量回归/差分进化法/光伏功率预测

Key words

K-means clustering/LSTM neural network/support vector regression/differential evolution/photovoltaic power prediction

分类

能源科技

引用本文复制引用

张元曦,杨国华,杨娜,李祯,马鑫,刘浩睿,南少帅..基于K-means聚类的LSTM-SVR-DE光伏功率组合预测[J].综合智慧能源,2025,47(2):71-78,8.

基金项目

宁夏大学研究生创新项目(CXXM2024-01) Ningxia University Graduate Innovation Project(CXXM 2024-01) (CXXM2024-01)

综合智慧能源

2097-0706

访问量1
|
下载量0
段落导航相关论文