| 注册
首页|期刊导航|水力发电|耦合多变量筛选和多层LSTM的短期径流预测研究

耦合多变量筛选和多层LSTM的短期径流预测研究

田伟 殷兆凯 董义阳 黄迪 刘青

水力发电2025,Vol.51Issue(3):22-27,118,7.
水力发电2025,Vol.51Issue(3):22-27,118,7.

耦合多变量筛选和多层LSTM的短期径流预测研究

Study on Short-term Runoff Prediction Coupled with Multivariate Screening and Multilayer LSTM

田伟 1殷兆凯 2董义阳 2黄迪 1刘青3

作者信息

  • 1. 三峡集团湖北清江水电开发有限责任公司,湖北 宜昌 443000
  • 2. 三峡集团科学技术研究院,北京 101100
  • 3. 中国船舶集团 710 研究所,湖北 武汉 443100
  • 折叠

摘要

Abstract

The screening of influencing factors for runoff prediction is a key link in the process of basin water forecasting.When building a short-term reservoir runoff prediction model with complex time series process,there are a variety of influencing factors that can be input into the model.In order to reduce the dimensions of input dataset and verify the new key influencing factors,this paper takes the short-term reservoir runoff prediction as the research object,and establishes the long short-term memory(LSTM)neural network of different scale datasets for model calibration.Then the Fisher Score algorithm and entropy weight-TOPSIS method are introduced to select seven key influencing factors from sixteen conventional influencing factors related to hydrometeorology,reservoir scheduling and power generation scheduling,and the root mean square error(RMSE)is used as accuracy index to optimize the hyperparameters of the three LSTM models.Finally the parameters and influencing factors of each optimized screening are superimposed into the multi-layer LSTM model to verify the flow prediction of the new key influencing factors.It is found that the LSTM model after screening the influencing factors has a better calibration effect,and the newly proposed influencing factor of the deviation rate of the execution of upstream reservoir power generation plan can further improve the prediction accuracy of reservoir runoff.

关键词

长短时记忆/径流预测/Fisher Score算法/水库调度/发电计划执行偏差率/关键影响因子

Key words

long short-term memory/runoff prediction/Fisher Score algorithm/reservoir scheduling/deviation rate of power generation plan execution/key influencing factor

分类

地球科学

引用本文复制引用

田伟,殷兆凯,董义阳,黄迪,刘青..耦合多变量筛选和多层LSTM的短期径流预测研究[J].水力发电,2025,51(3):22-27,118,7.

基金项目

国家重点研发计划项目(2022YFC3002702) (2022YFC3002702)

水力发电

0559-9342

访问量0
|
下载量0
段落导航相关论文