基于智能优化算法的门式起重机结构地震易损研究OA
门式起重机作为主要的货物装卸设备,预测其震后损伤状态具有重要意义.文中选取150条地震动记录,并结合 4 台门式起重机建立了数据集A和数据集B,通过数据集B构建了基于支持向量机的门式起重机结构损伤状态预测模型.对比分析由 4 种核函数建立模型的差异,将数据集A应用于此模型上,通过易损性曲线的对比评估模型性能.此外,还采用智能优化算法对模型进行优化,并评估优化后的模型性能.结果表明:由高斯核函数建立的模型预测性能最好,模型在数据集A上的表现良好,预测易损性曲线和基于IDA方法的易损性曲线基本保持一致;由麻雀搜索算法优化的模型在数据集A上的表现更好,2 种优化后的预测易损性曲线相较于未优化前的预测易损性曲线,其与基于IDA方法的易损性曲线贴合度更高,说明模型的优化效果良好.
Given the important role of portal cranes in cargo handling,accurately predicting their post-earthquake damage is essential.150 ground motion entries and 4 portal cranes were selected to establish Data Set A and Data Set B,and a damage prediction model of portal crane based on support vector machine was constructed based on Data Set B.After comparing and analyzing the differences of models established with these four different kinds of kernel functions,Data Set A was applied to this model,and the performance of the model was assessed by comparing the vulnerability curves.In addition,the model was optimized by adopting intelligent optimization algorithm,followed by an assessment of the performance of the model after optimization.The findings reveal that the model utilizing the Gaussian kernel function outperforms others in predictive accuracy.This model demonstrates robust performance on Data Set A,with its predicted vulnerability curves closely aligning with those derived from the Incremental Dynamic Analysis(IDA)method.Furthermore,the model optimized by the sparrow search algorithm exhibits enhanced performance on Data Set A.In both scenarios,the optimized models yield vulnerability curves that more closely match the IDA-based curves compared to the non-optimized models,thereby validating the effectiveness of this optimization approach.
刘琳;杨冲;饶雄
中铁联合国际集装箱智慧物流成都有限公司 成都 610084西南交通大学机械工程学院 成都 610031西南交通大学机械工程学院 成都 610031
机械工程
门式起重机支持向量机麻雀搜索算法灰狼优化算法易损性曲线
portal cranesupport vector machinesparrow search algorithmgrey wolf optimizervulnerability curve
《起重运输机械》 2025 (3)
25-31,51,8
四川省科技计划项目(2022YFG0241、2023YFG0182)
评论