| 注册
首页|期刊导航|智能系统学报|采用目标注意力的方面级多模态情感分析研究

采用目标注意力的方面级多模态情感分析研究

朱超杰 闫昱名 初宝昌 李刚 黄河燕 高小燕

智能系统学报2024,Vol.19Issue(6):1562-1572,11.
智能系统学报2024,Vol.19Issue(6):1562-1572,11.DOI:10.11992/tis.202404009

采用目标注意力的方面级多模态情感分析研究

Aspect-level multimodal sentiment analysis via object-attention

朱超杰 1闫昱名 2初宝昌 2李刚 2黄河燕 1高小燕3

作者信息

  • 1. 北京理工大学 计算机学院,北京 100081
  • 2. 北京华电电子商务科技有限公司,北京 100073
  • 3. 北京工业大学计算机学院,北京 100124
  • 折叠

摘要

Abstract

Aspect-level multimodal sentiment analysis(ALMSA)aims to identify the sentiment polarity of a specific as-pect word using both sentence and image data.Current models often rely on the global features of images,overlooking the details in the original image.To address this issue,we propose an object attention-based aspect-level multimodal sentiment analysis model(OAB-ALMSA).This model first employs an object detection algorithm to capture the de-tailed information of the objects from the original image.It then applies an object-attention mechanism and builds an it-erative fusion layer to fully fuse the multimodal information.Finally,a curriculum learning strategy is developed to tackle the challenges of training with complex samples.Experiments conducted on TWITTER-2015 data sets demon-strate that OAB-ALMSA,when combined with curriculum learning,achieves the highest F1.These results highlight that leveraging detailed image data enhances the model's overall understanding and improves prediction accuracy.

关键词

方面级情感分析/多模态/情感分析/目标检测/自注意力机制/自然语言处理/深度学习/特征提取

Key words

aspect-level sentiment analysis/multimodal/sentiment analysis/object detection/self-attention/natural lan-guage processing systems/deep learning/feature extraction

分类

计算机与自动化

引用本文复制引用

朱超杰,闫昱名,初宝昌,李刚,黄河燕,高小燕..采用目标注意力的方面级多模态情感分析研究[J].智能系统学报,2024,19(6):1562-1572,11.

基金项目

国家自然科学基金项目(U21B2009) (U21B2009)

横向科技项目(2023110051000823). (2023110051000823)

智能系统学报

OA北大核心CSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文