| 注册
首页|期刊导航|信息安全研究|基于ConvNeXt的伪造人脸检测方法

基于ConvNeXt的伪造人脸检测方法

何德芬 江倩 金鑫 冯明 苗圣法 易华松

信息安全研究2025,Vol.11Issue(3):231-240,10.
信息安全研究2025,Vol.11Issue(3):231-240,10.DOI:10.12379/j.issn.2096-1057.2025.03.05

基于ConvNeXt的伪造人脸检测方法

Fake Face Detection Method Based on ConvNeXt

何德芬 1江倩 1金鑫 1冯明 1苗圣法 1易华松1

作者信息

  • 1. 云南大学软件学院 昆明 650504||跨境网络空间安全教育部工程研究中心(云南大学) 昆明 650504
  • 折叠

摘要

Abstract

The fake images generated by deep generative models are becoming increasingly realistic,surpassing the human eye's ability to detect them.These models have become new tools for illegal activities,such as fabricating lies and creating public opinion.Although current researchers have proposed many detection methods to detect fake images,their generalization ability is typically limited.To address this issue,we proposed a fake face detection method based on ConvNeXt.Firstly,we add a PSA(polarization self-attention)module after the second and third downsampling modules of ConvNeXt,enhancing the network's spatial and channel attention performance.Secondly,a RIB(rich imformation block)is designed at the end of ConvNeXt to enrich the information learned by the network.The information is processed through this module before final classification.Furthermore,the loss function used in network training is a combination of CrossEntropy loss and KL(Kullback-Leibler)divergence.Extensive experiments on the current mainstream fake face datasets demonstrate that our method surpasses all comparative methods in accuracy and generalization on the FF++C23 dataset.

关键词

神经网络/深度学习/伪造人脸/特征提取/伪造图像检测

Key words

neural network/deep learning/fake face/feature extraction/fake image detection

分类

计算机与自动化

引用本文复制引用

何德芬,江倩,金鑫,冯明,苗圣法,易华松..基于ConvNeXt的伪造人脸检测方法[J].信息安全研究,2025,11(3):231-240,10.

基金项目

国家自然科学基金项目(62101481,62261060) (62101481,62261060)

云南省基础研究计划项目(202401AT070470,202301AW070007,202201AU070033,202201AT070112,202301AU070210) (202401AT070470,202301AW070007,202201AU070033,202201AT070112,202301AU070210)

云南省科技厅重大科技专项(202202AD080002) (202202AD080002)

云南省迟学斌专家工作站项目(202305AF150078) (202305AF150078)

信息安全研究

OA北大核心

2096-1057

访问量0
|
下载量0
段落导航相关论文