| 注册
首页|期刊导航|通信学报|城轨车-地场景下基于CGAN-LSTM网络的OTFS-ISAC系统信道估计

城轨车-地场景下基于CGAN-LSTM网络的OTFS-ISAC系统信道估计

杨骞 苏宏升 陶旺林 刘大为

通信学报2025,Vol.46Issue(2):59-71,13.
通信学报2025,Vol.46Issue(2):59-71,13.DOI:10.11959/j.issn.1000-436x.2025032

城轨车-地场景下基于CGAN-LSTM网络的OTFS-ISAC系统信道估计

OTFS-ISAC system channel estimation based on GAN-LSTM network in urban rail train-infrastructure scenario

杨骞 1苏宏升 2陶旺林 3刘大为4

作者信息

  • 1. 兰州交通大学自动化与电气工程学院,甘肃 兰州 730070||兰州工业学院电气工程学院,甘肃 兰州 730300
  • 2. 兰州交通大学自动化与电气工程学院,甘肃 兰州 730070
  • 3. 兰州交通大学自动化与电气工程学院,甘肃 兰州 730070||中国移动通信集团甘肃有限公司,甘肃 兰州 730070
  • 4. 兰州工业学院电气工程学院,甘肃 兰州 730300
  • 折叠

摘要

Abstract

In order to solve the problem of integrated sensing and communication(ISAC)signal transmission channel es-timation in commercial B5G/6G urban rail train-infrastructure scenario,a channel estimation method based on deep learning was proposed.An ISAC signal transmission system model based on orthogonal time frequency space(OTFS)modulation was established,the OTFS pilot was introduced,with OTFS pilot introduced to aid,CGAN-LSTM combin-ing conditional generative adversarial network(CGAN)and long short-term memory(LSTM)network was designed.Chaos game optimization(CGO)algorithm was combined with classical Adam optimizer to optimize the network param-eters,and the optimized network was used to complete the channel estimation.Simulation results show that the proposed method is superior to traditional channel estimation methods in normalized mean square error and bit error rate,and pro-vides necessary data basis for ISAC signal detection and recovery.

关键词

通信感知一体化/正交时频空/条件生成对抗网络/长短期记忆/混沌博弈优化

Key words

ISAC/OTFS/CGAN/LSTM/CGO

分类

电子信息工程

引用本文复制引用

杨骞,苏宏升,陶旺林,刘大为..城轨车-地场景下基于CGAN-LSTM网络的OTFS-ISAC系统信道估计[J].通信学报,2025,46(2):59-71,13.

基金项目

甘肃省高校教师创新基金资助项目(No.2025B-239) (No.2025B-239)

兰州工业学院青年科技创新基金资助项目(No.2024KJ-16) (No.2024KJ-16)

甘肃省高校青年博士支持项目(No.2023QB-049) The University Teachers'Innovation Fund Project of Gansu Province(No.2025B-239),The Youth Science and Technology Innovation Project of Lanzhou Institute of Technology(No.2024KJ-16),The University Young Doctor Support Project of Gansu Province(No.2023QB-049) (No.2023QB-049)

通信学报

OA北大核心

1000-436X

访问量0
|
下载量0
段落导航相关论文