| 注册
首页|期刊导航|中国电机工程学报|基于CNN-BiLSTM-Attention的直流微电网故障诊断研究

基于CNN-BiLSTM-Attention的直流微电网故障诊断研究

孟宏宇 张建良 蔡兆龙 李超勇

中国电机工程学报2025,Vol.45Issue(4):1369-1380,中插12,13.
中国电机工程学报2025,Vol.45Issue(4):1369-1380,中插12,13.DOI:10.13334/j.0258-8013.pcsee.231736

基于CNN-BiLSTM-Attention的直流微电网故障诊断研究

Research on DC Microgrid Fault Diagnosis Based on CNN-BiLSTM-Attention

孟宏宇 1张建良 1蔡兆龙 1李超勇1

作者信息

  • 1. 浙江大学电气工程学院,浙江省 杭州市 310027
  • 折叠

摘要

Abstract

In this paper,a fault diagnosis method is proposed for existing DC microgrids to address the challenges of speed and accuracy.The proposed method combines the strengths of convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)network,incorporating an attention mechanism.Specifically,CNN is utilized to extract vertical detailed features from fault data at a specific moment,compressing the data length and reducing subsequent network training parameters to improve the speed of fault diagnosis.Furthermore,we construct a cascaded network with BiLSTM as the core,enabling the extraction of horizontal historical features from fault data during the fault evolution process.The attention mechanism is integrated to enhance the model's focus on the feature changes in fault data,thereby improving the accuracy of fault diagnosis.Simulation results demonstrate that the proposed method outperforms mainstream fault diagnosis methods in terms of accuracy and recognition speed.Additionally,the proposed method exhibits excellent diagnostic performance for fault record data under conditions of noise interference,imbalanced samples,and small sample sizes.

关键词

故障诊断/直流微电网/卷积神经网络/双向长短期记忆网络/注意力机制

Key words

fault diagnosis/DC microgrid/convolutional neural network/bidirectional long short-term memory network/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

孟宏宇,张建良,蔡兆龙,李超勇..基于CNN-BiLSTM-Attention的直流微电网故障诊断研究[J].中国电机工程学报,2025,45(4):1369-1380,中插12,13.

基金项目

国家自然科学基金项目(62127803). Project Supported by National Natural Science Foundation of China(62127803). (62127803)

中国电机工程学报

OA北大核心

0258-8013

访问量0
|
下载量0
段落导航相关论文