| 注册
首页|期刊导航|中国电机工程学会电力与能源系统学报(英文版)|Improved Multi-grained Cascade Forest Model for Transformer Fault Diagnosis

Improved Multi-grained Cascade Forest Model for Transformer Fault Diagnosis

Yiyi Zhang Yuxuan Wang Jiefeng Liu Heng Zhang Xianhao Fan Dongdong Zhang

中国电机工程学会电力与能源系统学报(英文版)2025,Vol.11Issue(1):468-476,9.
中国电机工程学会电力与能源系统学报(英文版)2025,Vol.11Issue(1):468-476,9.DOI:10.17775/CSEEJPES.2021.04670

Improved Multi-grained Cascade Forest Model for Transformer Fault Diagnosis

Improved Multi-grained Cascade Forest Model for Transformer Fault Diagnosis

Yiyi Zhang 1Yuxuan Wang 1Jiefeng Liu 1Heng Zhang 1Xianhao Fan 1Dongdong Zhang1

作者信息

  • 1. Guangxi Key Laboratory of Power System Optimization and Energy Technology,Guangxi University,Nanning,Guangxi 530004,China
  • 折叠

摘要

关键词

Convolutional neural networks/dissolved gas analysis/fault diagnosis/multi-grained cascade forest(gcForest)/power transformer

Key words

Convolutional neural networks/dissolved gas analysis/fault diagnosis/multi-grained cascade forest(gcForest)/power transformer

引用本文复制引用

Yiyi Zhang,Yuxuan Wang,Jiefeng Liu,Heng Zhang,Xianhao Fan,Dongdong Zhang..Improved Multi-grained Cascade Forest Model for Transformer Fault Diagnosis[J].中国电机工程学会电力与能源系统学报(英文版),2025,11(1):468-476,9.

基金项目

This work was supported in part by the National Natural Science Foundation of China under Grant(52277138)and Natural Science Foundation of Guangxi under Grant(2018JJB160064 (52277138)

2018JJA160176). ()

中国电机工程学会电力与能源系统学报(英文版)

2096-0042

访问量0
|
下载量0
段落导航相关论文