| 注册
首页|期刊导航|信息与控制|基于改进灰狼算法的润叶机控制参数优化

基于改进灰狼算法的润叶机控制参数优化

张利萍 李英娜 杨苡 董俊敏 罗丹萍 许晓平

信息与控制2024,Vol.53Issue(6):793-803,11.
信息与控制2024,Vol.53Issue(6):793-803,11.DOI:10.13976/j.cnki.xk.2024.3296

基于改进灰狼算法的润叶机控制参数优化

Optimization of Control Parameters of Leaf-wetting Machine Based on Improved Gray Wolf Algorithm

张利萍 1李英娜 1杨苡 2董俊敏 2罗丹萍 1许晓平1

作者信息

  • 1. 昆明理工大学信息工程与自动化学院,云南 昆明 650500||云南省计算机技术应用重点实验室,云南 昆明 650500
  • 2. 云南省烟叶复烤有限公司楚雄复烤厂,云南 楚雄 675000
  • 折叠

摘要

Abstract

We address the challenge of adapting to external factors and fluctuations in incoming material characteristics in leaf-wetting machines,which traditionally rely on manual experience to regulate control parameters.Our approach predicts tobacco quality prediction and adaptively optimizes process parameters.First,we identify key control parameters and factors affecting their regulation by systematically analyzing the process flow.We then apply a Bayesian optimization extreme gradi-ent boosting tree algorithm to model the relationship between process parameters and the moisture content and temperature of exported tobacco.Finally,using the standard quality of exported tobacco as our optimization objective,we determine the global optimal solution.To stabilize tobacco quality after wetting and improve the leaf-wetting machine's operation,we introduce an improved gray wolf algorithm with bounded stability and an adaptive penalty function.This approach accelerates convergence speed and reduces control parameter fluctuations.Experimental results show that our method reduces the moisture content and temperature fluctuation ranges of exported tobacco by 42.5%and29.9%,respectively,compared to manual adjustments,ensuring smoother operation of the leaf-wetting machine.

关键词

参数优化/目标函数/极度梯度提升树/灰狼算法/润叶机

Key words

parameter optimization/objective function/extreme gradient boosting tree/gray wolf algorithm/leaf-wetting machine

分类

轻工纺织

引用本文复制引用

张利萍,李英娜,杨苡,董俊敏,罗丹萍,许晓平..基于改进灰狼算法的润叶机控制参数优化[J].信息与控制,2024,53(6):793-803,11.

基金项目

云南省基础研究专项项目(202201AS070029) (202201AS070029)

信息与控制

OA北大核心CSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文