重庆理工大学学报(自然科学版)2025,Vol.39Issue(3):11-18,8.DOI:10.3969/j.issn.1674-8425(z).2025.02.002
一种面向智能驾驶的单阶段点云三维目标检测算法
A single-stage point cloud 3D object detection algorithm for intelligent driving
摘要
Abstract
To well balance the detection accuracy and efficiency between single-stage and two-stage networks in current 3D object detection algorithms based on point cloud data,we propose a pseudo two-stage 3D object detection framework utilizing point cloud voxels.This framework includes a lightweight Center Heatmap Module for predicting object center points,eliminating anchor box settings and non-maximum suppression operations in traditional region proposal networks.To better utilize multi-scale voxel features,an AFP-Cross-Attention module is designed to extract high-value features in multi-scale voxels and perform cross-attention computations,reducing computational complexity compared to global attention.The AFP-Transformer detection head,built on the AFP method,effectively models the dependency between query features and high-value features,enhancing network accuracy.Experimental results on the KITTI dataset show our method improves the average precision for three main object categories by 1.43%,5.23%,and 4.41%respectively compared to the baseline method,with an average inference time of 34.19 ms per frame.Our approach effectively narrows the accuracy gap between single-stage and two-stage networks while maintaining high detection efficiency.关键词
点云/三维目标检测/自适应特征池化/注意力机制Key words
point clouds/3D object detection/adaptive feature pooling/attention mechanism分类
交通工程引用本文复制引用
汪世豪,邓涛..一种面向智能驾驶的单阶段点云三维目标检测算法[J].重庆理工大学学报(自然科学版),2025,39(3):11-18,8.基金项目
国家自然科学基金项目(52275051) (52275051)
重庆交通大学自然科学类揭榜挂帅项目(XJ2023000701) (XJ2023000701)
重庆市研究生导师团队建设项目(JDDSTD2022007) (JDDSTD2022007)
重庆市研究生联合培养基地建设项目(JDLHPYJD2022001) (JDLHPYJD2022001)