| 注册
首页|期刊导航|重庆理工大学学报(自然科学版)|考虑轮胎侧偏刚度的分布式电动汽车轨迹跟踪控制

考虑轮胎侧偏刚度的分布式电动汽车轨迹跟踪控制

邹俊逸 蒋益民 王峰

重庆理工大学学报(自然科学版)2025,Vol.39Issue(3):27-38,12.
重庆理工大学学报(自然科学版)2025,Vol.39Issue(3):27-38,12.DOI:10.3969/j.issn.1674-8425(z).2025.02.004

考虑轮胎侧偏刚度的分布式电动汽车轨迹跟踪控制

Distributed electric vehicle trajectory tracking control considering tyre lateral stiffness

邹俊逸 1蒋益民 1王峰1

作者信息

  • 1. 武汉科技大学汽车与交通工程学院,武汉 430065||新能源汽车先进底盘技术湖北省工程研究中心,武汉 430065
  • 折叠

摘要

Abstract

We propose a trajectory tracking controller considering the dynamic change in tyre cornering stiffness.First,with a distributed electric vehicle as our research object,a vehicle dynamics model with seven degrees of freedom is built.The wheel dynamics parameters are described using the magic tyre formula.An analysis is conducted on the correlation between vertical load,sideslip angle,and sideslip stiffness.Then,a sideslip stiffness estimator is developed using a radial basis function neural network(RBFNN).To address the uncertainty of RBFNN initialization parameters,the k-means algorithm is utilized to enhance its function center.Next,the weights of the hidden layer and output layer of RBFNN are adjusted using the least mean square(LMS)method.Our approach aims to enhance the prediction accuracy and convergence speed of the sideslip stiffness estimator.The training results indicate the optimized RBFNN is 4 seconds faster than the test time,reducing the training time by 700 seconds.Moreover,the absolute error and relative error are down by 44.3%and 55.2%respectively.Finally,a trajectory tracking controller is formulated employing model predictive control(MPC).The predicted model incorporates the calculated lateral stiffness value,and dynamic limitations are included to enhance tracking stability.The CarSim/Simulink co-simulation experiment platform is successfully constructed.The trajectory tracking controller considering the lateral stiffness is compared to the controller without the consideration.Results show the trajectory tracking controller considering the side deflection stiffness achieves better stability both in high and low adhesion road surfaces,indicating the great potentials of our improved estimation model and trajectory tracking strategy.

关键词

轨迹跟踪/侧偏刚度/模型预测控制/分布式电动汽车/径向基神经网络/k-means/最小二乘法

Key words

trajectory tracking/lateral stiffness/model predictive control/distributed electric vehicles/radial basis function neural network/k-means/least squares method

分类

交通工程

引用本文复制引用

邹俊逸,蒋益民,王峰..考虑轮胎侧偏刚度的分布式电动汽车轨迹跟踪控制[J].重庆理工大学学报(自然科学版),2025,39(3):27-38,12.

基金项目

国家自然科学基金项目(52202480) (52202480)

湖北省自然科学基金项目(2022CFB732) (2022CFB732)

重庆理工大学学报(自然科学版)

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文