| 注册
首页|期刊导航|重庆理工大学学报(自然科学版)|MFPSO优化参数的感应加热电源功率控制研究

MFPSO优化参数的感应加热电源功率控制研究

程三榜 杨光永 徐天奇 吴大飞

重庆理工大学学报(自然科学版)2025,Vol.39Issue(3):120-128,9.
重庆理工大学学报(自然科学版)2025,Vol.39Issue(3):120-128,9.DOI:10.3969/j.issn.1674-8425(z).2025.02.015

MFPSO优化参数的感应加热电源功率控制研究

Optimizing parameter control of induction heating power supply using the MFPSO algorithm

程三榜 1杨光永 1徐天奇 1吴大飞1

作者信息

  • 1. 云南民族大学电气信息工程学院,昆明 650000||云南省无人自主系统重点实验室,昆明 650000
  • 折叠

摘要

Abstract

To address the low convergence accuracy and susceptibility to local optima inherent in traditional particle swarm optimization algorithms,we propose a multi-strategy integrated improvement particle swarm optimization algorithm.First,the particle position updating method of the midpoint perpendicular algorithm is employed to enhance the convergence speed of particles.Then,explosive particles around the optimal particle are generated to enhance the accuracy of the algorithm.Next,a linear inertia weight method is introduced to augment the local exploitation capability and global exploration ability of the algorithm.Finally,a performance testing of the algorithm is conducted using eight benchmark functions.Our results indicate the MFPSO algorithm exhibits faster convergence speed and higher convergence accuracy.When the improved particle swarm optimization algorithm is introduced to constant power control of an induction heating power supply and a model is built in Simulink,results show the MFPSO optimized power control not only exhibits minimal overshoot,short settling time,and strong disturbance rejection capability,but also enables the system to quickly reach steady state,demonstrating our algorithm's effectiveness.

关键词

爆炸粒子/中垂线算法/感应加热/功率控制

Key words

explosive particles/midpoint perpendicular algorithm/induction heating/constant power control

分类

计算机与自动化

引用本文复制引用

程三榜,杨光永,徐天奇,吴大飞..MFPSO优化参数的感应加热电源功率控制研究[J].重庆理工大学学报(自然科学版),2025,39(3):120-128,9.

基金项目

国家自然科学基金项目(61761049,61261022) (61761049,61261022)

重庆理工大学学报(自然科学版)

OA北大核心

1674-8425

访问量2
|
下载量0
段落导航相关论文