| 注册
首页|期刊导航|重庆理工大学学报(自然科学版)|面向PEMFC长期老化预测的多尺度卷积神经网络

面向PEMFC长期老化预测的多尺度卷积神经网络

谢永平 胡成玉

重庆理工大学学报(自然科学版)2025,Vol.39Issue(3):227-233,7.
重庆理工大学学报(自然科学版)2025,Vol.39Issue(3):227-233,7.DOI:10.3969/j.issn.1674-8425(z).2025.02.028

面向PEMFC长期老化预测的多尺度卷积神经网络

Multi-scale convolutional neural network for long-term aging prediction of PEMFC

谢永平 1胡成玉2

作者信息

  • 1. 湖北开放大学电信工程学院,武汉 430074
  • 2. 中国地质大学(武汉)计算机学院,武汉 430074
  • 折叠

摘要

Abstract

Accurate prediction of the long-term aging trends of proton exchange membrane fuel cells(PEMFC)is crucial for system control and diagnostics.However,most data-driven models primarily focus on short-term predictions,making it challenging to deliver precise long-term results.In this paper,we propose a multi-scale convolutional neural network(MCNN)model that leverages multi-scale decomposition to separate the input data into linear and nonlinear trends.This approach enables the model to accurately extract long-term dependencies and effectively capture nonlinear information within the data.By integrating these decomposed trends,the model enhances the accuracy of long-term predictions.The effectiveness and accuracy of our proposed model is validated by the IEEE PHM 2014 fuel cell durability test data.

关键词

质子交换膜燃料电池/长期老化预测/数据驱动/多尺度卷积

Key words

proton exchange membrane fuel cells/long-term aging prediction/data-driven/multi-scale convolution

分类

动力与电气工程

引用本文复制引用

谢永平,胡成玉..面向PEMFC长期老化预测的多尺度卷积神经网络[J].重庆理工大学学报(自然科学版),2025,39(3):227-233,7.

基金项目

国家自然科学基金面上项目(62073300) (62073300)

湖北省教育科学规划重点课题(2022GA135) (2022GA135)

重庆理工大学学报(自然科学版)

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文