| 注册
首页|期刊导航|铁道科学与工程学报|基于AMSD-WTSSA-DELM模型的铁路沿线短期风速预测方法

基于AMSD-WTSSA-DELM模型的铁路沿线短期风速预测方法

尼比江·艾力 张林鍹 李奕超 景雨啸 高金山 王渊 谢明浩 罗晓龙

铁道科学与工程学报2025,Vol.22Issue(2):543-556,14.
铁道科学与工程学报2025,Vol.22Issue(2):543-556,14.DOI:10.19713/j.cnki.43-1423/u.T20240720

基于AMSD-WTSSA-DELM模型的铁路沿线短期风速预测方法

Short-term wind speed prediction method along the railroad based on AMSD-WTSSA-DELM model

尼比江·艾力 1张林鍹 2李奕超 3景雨啸 4高金山 5王渊 5谢明浩 1罗晓龙4

作者信息

  • 1. 新疆大学 电气工程学院,新疆 乌鲁木齐 830047
  • 2. 新疆大学 电气工程学院,新疆 乌鲁木齐 830047||清华大学 国家计算机集成制造系统工程技术研究中心,北京 100084
  • 3. 中国铁路乌鲁木齐集团有限公司 科学研究所,新疆 乌鲁木齐 830063
  • 4. 中国铁路乌鲁木齐集团有限公司 哈密供电段,新疆 哈密 835000
  • 5. 中国铁路乌鲁木齐集团有限公司 供电部,新疆 乌鲁木齐 830011
  • 折叠

摘要

Abstract

To solve the problems of low prediction accuracy and poor generalization in wind speed forecasting along Northwestern China's railways caused by strong non-stationarity and stochastic fluctuations,this study proposed a hybrid AMSD-WTSSA-DELM prediction framework.First,the original wind speed series with high non-stationarity,the long-term correlation performance of the components,the underlying patterns,trends and periodicity contained in the components were used to decompose each step,and the decomposition conditions and adaptive update thresholds were established.In order to avoid excessive decomposition,the adaptive refactoring method was added to decompose until there are no high-complexity components,so as to achieve adaptive multi-step decomposition with strong adaptability.Furthermore,the WTSSA algorithm was introduced by integrating chaotic mapping,adaptive weighting and the adaptive t-distribution perturbation strategies are integrated into SSA,which improved the global search and local exploration capabilities of the original SSA,accelerated the convergence speed,and verified the excellence of the WTSSA algorithm through test functions.Then,for each component of AMSD output,a Deep Extreme Learning Machine(DELM)model with WTSSA optimized weights and biases was established.Finally,the forecast data for all components was summarized to synthesize the final forecast output.The experimental results show that the proposed model has a significant improvement effect on the prediction performance of wind speed data along two groups of the actual railway,and the first set of experimental data as an example,the mean absolute error(Emae)and root mean square error(Ermse)of DELM reduced by 90.32%and 82.25%,respectively,and the coefficient of determination(R2)increased by 43.00%.In summary,the prediction model proposed in this paper effectively overcomes the time-lag problem caused by the nonlinear characteristics of wind speed,which has high generalization performance and can predict short-term wind speed changes to help the railway system make more effective safety decisions and provide strong technical support for the safe operation of trains.

关键词

短期风速预测/自适应多步分解/深度极限学习机/改进麻雀搜索算法/铁路沿线风速

Key words

short-term wind speed prediction/adaptive multi-step decomposition/deep extreme learning machine/improved sparrow search algorithm/wind speed along railroads

分类

交通工程

引用本文复制引用

尼比江·艾力,张林鍹,李奕超,景雨啸,高金山,王渊,谢明浩,罗晓龙..基于AMSD-WTSSA-DELM模型的铁路沿线短期风速预测方法[J].铁道科学与工程学报,2025,22(2):543-556,14.

基金项目

中国国家铁路集团有限公司青年专项课题(Q2023T002) (Q2023T002)

新疆维吾尔自治区自然科学基金资助项目(2022D01C431) (2022D01C431)

铁道科学与工程学报

OA北大核心

1672-7029

访问量0
|
下载量0
段落导航相关论文