| 注册
首页|期刊导航|电波科学学报|基于主成分降维的海面散射系数快速预测方法

基于主成分降维的海面散射系数快速预测方法

刘悦 董春雷 孟肖 郭立新

电波科学学报2025,Vol.40Issue(1):21-28,8.
电波科学学报2025,Vol.40Issue(1):21-28,8.DOI:10.12265/j.cjors.2023289

基于主成分降维的海面散射系数快速预测方法

A fast prediction method for sea surface scattering coefficient based on principal component analysis dimensionality reduction

刘悦 1董春雷 1孟肖 1郭立新1

作者信息

  • 1. 西安电子科技大学,西安 710071
  • 折叠

摘要

Abstract

The electromagnetic scattering characteristics of sea surface have complex dependencies on various influencing factors,such as sea wave parameters,radar parameters,etc.The traditional electromagnetic scattering prediction models for the large-scale sea surface tend to suffer from overfitting problems when facing multi-parameter high-dimensional mapping.Choosing appropriate dimensionality reduction methods and model parameters is an efficient way to improve the model performance.Therefore,this paper proposes a fast prediction method for sea surface electromagnetic scattering based on principal component analysis(PCA)dimensionality reduction.Firstly,the backscattering coefficient data set is constructed by using the Wen's spectrum and multi-scale electromagnetic scattering model of the sea surface.Then,the PCA method is introduced to reduce the dimension of the simulation parameters and extract the main features.Finally,a nonlinear regression model based on least squares support vector regression(LSSVR)machine is established,and the dimensionality reduction data is inputted for prediction and the accuracy of the prediction results is evaluated.By comparing the prediction results of different dimensionality reduction ratios,the influence of principal component dimensionality reduction on the model performance is analyzed.The results show that reducing the dimension of the simulation parameters appropriately can significantly increase the accuracy and enhance the interpretability.When the dimensionality reduction ratio is about 25%,the model accuracy reaches the optimum.When the dimensionality reduction ratio is greater than 40%,the model accuracy decreases significantly,which is not conducive to sea surface electromagnetic scattering prediction.

关键词

主成分分析(PCA)/海面电磁散射预测/最小二乘支持向量回归机(LSSVR)/半确定性面元法/参数降维

Key words

principal component analysis(PCA)/sea surface electromagnetic scattering prediction/least squares support vector regression(LSSVR)/semi-deterministic facet method/parameter dimensionality reduction

分类

电子信息工程

引用本文复制引用

刘悦,董春雷,孟肖,郭立新..基于主成分降维的海面散射系数快速预测方法[J].电波科学学报,2025,40(1):21-28,8.

基金项目

国家自然科学基金(62231021,62301401) (62231021,62301401)

中央高校基本科研业务费专项资金(QTZX22161) (QTZX22161)

电波科学学报

OA北大核心

1005-0388

访问量0
|
下载量0
段落导航相关论文