| 注册
首页|期刊导航|电测与仪表|基于自适应VMD和优化DFNN的剩余电流识别

基于自适应VMD和优化DFNN的剩余电流识别

张祥珂 王雅静 窦震海 白云鹏 王玮

电测与仪表2025,Vol.62Issue(3):190-197,8.
电测与仪表2025,Vol.62Issue(3):190-197,8.DOI:10.19753/j.issn1001-1390.2025.03.023

基于自适应VMD和优化DFNN的剩余电流识别

Residual current recognition based on adaptive VMD and optimized DFNN

张祥珂 1王雅静 1窦震海 1白云鹏 1王玮1

作者信息

  • 1. 山东理工大学 电气与电子工程学院,山东 淄博 255000
  • 折叠

摘要

Abstract

In order to realize rapid fault recognition of residual current device(RCD)and improve power safety,a fault residual current recognition method(AVMD-DFNN)based on adaptive variational modal decomposition(AVMD)and optimal dynamic fuzzy neural network(DFNN)is proposed.The decomposition parameters of VMD are determined adaptively by empirical mode decomposition(EMD)to realize the de-noising of the residual current signal.The characteristic parameters of residual current signal are extracted and used as the classification index of DFNN to recognize the type of residual current fault after the dimensionality reduction process.The DFNN is opti-mized by the minimum output method to remove the redundant fuzzy rule functions,so as to realize the rapid fault recognition of RCD.The simulation results show that AVMD-DFNN has high recognition accuracy and speed,which provides a theoretical reference for the development of new adaptive residual current devices.

关键词

剩余电流/动态模糊神经网络/变分模态分解/故障识别

Key words

residual current/dynamic fuzzy neural network/variational mode decomposition/fault recognition

分类

动力与电气工程

引用本文复制引用

张祥珂,王雅静,窦震海,白云鹏,王玮..基于自适应VMD和优化DFNN的剩余电流识别[J].电测与仪表,2025,62(3):190-197,8.

基金项目

国家自然科学基金资助项目(52077221) (52077221)

山东省自然科学基金项目(ZR2020MF124) (ZR2020MF124)

电测与仪表

OA北大核心

1001-1390

访问量0
|
下载量0
段落导航相关论文