| 注册
首页|期刊导航|电测与仪表|基于多元振动序列共性特征的电抗器故障诊断

基于多元振动序列共性特征的电抗器故障诊断

付铭 朱明 梅杰 张静 肖黎 张宗喜

电测与仪表2025,Vol.62Issue(3):198-207,10.
电测与仪表2025,Vol.62Issue(3):198-207,10.DOI:10.19753/j.issn1001-1390.2025.03.024

基于多元振动序列共性特征的电抗器故障诊断

Reactor fault diagnosis based on common feature of multivariate vibration sequences

付铭 1朱明 1梅杰 1张静 2肖黎 2张宗喜3

作者信息

  • 1. 华中科技大学电子信息与通信学院,武汉 430074
  • 2. 南瑞集团(国网电力科学研究院)有限公司,南京 211106||国网电力科学研究院武汉南瑞有限责任公司,武汉 430074
  • 3. 国网四川省电力公司电力科学研究院,成都 610041
  • 折叠

摘要

Abstract

Aiming at the limitation that current feature selection algorithms are only available for univariate vibra-tion sequence,this paper proposes a multivariate vibration sequences feature selection algorithm named SVM-RFE-GA based on support vector machine recursive feature elimination algorithm(SVM-RFE)and genetic algorithm(GA).Taking a 220 kV high voltage shunt reactor as the research object,we build a mechanical fault simulation platform,set up 5 kinds of equipment states and collect multivariate vibration sequences of different equipment states at 24 sampling positions on its surface.We construct the feature pool from the time domain,frequency do-main and time-frequency domain.For single vibration sequences,we rank the features and select features prelimi-narily by SVM-RFE.Then,the preliminarily select features are further optimized by GA algorithm to select the fea-ture combination with the highest accuracy and the least number.The experimental result shows that the proposed method can select the common feature combination of multivariate vibration sequences,and the combination can en-sure the highest fault diagnosis accuracy and the minimum number of features.

关键词

高压并联电抗器/故障诊断/特征选择/递归特征消除算法/遗传算法

Key words

high voltage shunt reactor/fault diagnosis/feature selection/SVM-RFE/GA

分类

动力与电气工程

引用本文复制引用

付铭,朱明,梅杰,张静,肖黎,张宗喜..基于多元振动序列共性特征的电抗器故障诊断[J].电测与仪表,2025,62(3):198-207,10.

基金项目

国家电网有限公司科技项目(52199919000A) (52199919000A)

电测与仪表

OA北大核心

1001-1390

访问量0
|
下载量0
段落导航相关论文