| 注册
首页|期刊导航|电力需求侧管理|基于负荷分解与辨识的短期电力负荷预测

基于负荷分解与辨识的短期电力负荷预测

朱俊澎 李子钰 李虎军 邓振立 袁越

电力需求侧管理2025,Vol.27Issue(2):55-61,7.
电力需求侧管理2025,Vol.27Issue(2):55-61,7.DOI:10.3969/j.issn.1009-1831.2025.02.009

基于负荷分解与辨识的短期电力负荷预测

Short-term power load forecasting based on load decomposition and identification

朱俊澎 1李子钰 1李虎军 2邓振立 2袁越1

作者信息

  • 1. 河海大学 电气与动力工程学院,南京 210098
  • 2. 国网河南省电力公司经济技术研究院,郑州 450052
  • 折叠

摘要

Abstract

In order to further reduce the forecasting error of electric load data,a short-term power load forecasting method based on load de-composition and identification is proposed.First,for the electric power load data of each industry,the polynomial fitting error of tempera-ture-sensitive load to the temperature series is taken as the objective function,and the load decomposition is transformed into a mathemati-cal optimization problem,and the total load of each industry is decomposed into the weekly load based on load identification component and the temperature-sensitive load component.Second,the short-term load prediction is performed for the temperature-sensitive load compo-nent based on the long short-term memory network.Finally,the temperature-sensitive load prediction results are superimposed with the weekly load based on load identification component to obtain the complete load forecast results.The results show that the short-term load forecasting method based on load decomposition and identification proposed can effectively reduce the short-term load forecasting error.

关键词

负荷预测/负荷分解/负荷辨识/长短时记忆网络

Key words

load forecasting/load decomposition/load identification/LSTM network

分类

动力与电气工程

引用本文复制引用

朱俊澎,李子钰,李虎军,邓振立,袁越..基于负荷分解与辨识的短期电力负荷预测[J].电力需求侧管理,2025,27(2):55-61,7.

基金项目

江苏省自然科学基金资助项目(BK20221165) (BK20221165)

电力需求侧管理

1009-1831

访问量0
|
下载量0
段落导航相关论文