| 注册
首页|期刊导航|电器与能效管理技术|基于GWO-LSSVM的直流故障电弧诊断方法

基于GWO-LSSVM的直流故障电弧诊断方法

刘树鑫 刘丙泽 邢朝建 明欣 周厚霖 吕先锋

电器与能效管理技术Issue(1):14-22,9.
电器与能效管理技术Issue(1):14-22,9.DOI:10.16628/j.cnki.2095-8188.2025.01.003

基于GWO-LSSVM的直流故障电弧诊断方法

DC Fault Arc Diagnosis Method Based on GWO-LSSVM

刘树鑫 1刘丙泽 1邢朝建 1明欣 1周厚霖 1吕先锋1

作者信息

  • 1. 特种电机与高压电器教育部重点实验室(沈阳工业大学),辽宁沈阳 110870
  • 折叠

摘要

Abstract

In order to solve the problem that the identification accuracy of DC arc faults is not high under different working conditions,a gray wolf optimization least squares support vector machine(GWO-LSSVM)is proposed to diagnose DC arc under multi-load conditions.Firstly,the improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)is applied to perform the intrinsic mode function(IMF)decomposition on the DC arc current signals obtained from the mixed load of the reference high-speed railway station under the different operating conditions.Secondly,the relevant components are screened and combined with multi-scale permutation entropy(MPE)to construct the feature vectors.Finally,in response to the slow convergence speed of the diagnostic model and the tendency of the model to fall into the local optima,the LSSVM model optimized by GWO is applied for the fault state recognition.The experimental results show that the accuracy reaches 98.33%.By comparing with other algorithms,the efficiency of the proposed method has been confirmed.

关键词

直流故障电弧/多尺度排列熵/灰狼优化算法/故障诊断

Key words

DC fault arc/multi-scale permutation entropy/grey wolf optimization(GWO)algorithm/fault diagnosis

分类

动力与电气工程

引用本文复制引用

刘树鑫,刘丙泽,邢朝建,明欣,周厚霖,吕先锋..基于GWO-LSSVM的直流故障电弧诊断方法[J].电器与能效管理技术,2025,(1):14-22,9.

基金项目

辽宁省科技重大专项(2020JH1/10100012) (2020JH1/10100012)

国网科技项目(5100-202113396A-0-0-00). (5100-202113396A-0-0-00)

电器与能效管理技术

2095-8188

访问量0
|
下载量0
段落导航相关论文