| 注册
首页|期刊导航|福建师范大学学报(自然科学版)|基于特征记忆库的三维点云域自适应语义分割

基于特征记忆库的三维点云域自适应语义分割

陈子宜 叶锋

福建师范大学学报(自然科学版)2025,Vol.41Issue(2):35-42,8.
福建师范大学学报(自然科学版)2025,Vol.41Issue(2):35-42,8.DOI:10.12046/j.issn.1000-5277.2024060039

基于特征记忆库的三维点云域自适应语义分割

Domain Adaptive Semantic Segmentation for 3D Point Clouds Based on Feature Memory Bank

陈子宜 1叶锋2

作者信息

  • 1. 福建师范大学计算机与网络空间安全学院,福建 福州 350117
  • 2. 福建师范大学计算机与网络空间安全学院,福建 福州 350117||数字福建大数据安全技术研究所,福建 福州 350117||福建省公共服务大数据挖掘与应用工程技术研究中心,福建 福州 350117
  • 折叠

摘要

Abstract

Due to the complexity of urban vehicle-mounted laser point cloud application sce-narios,deep learning-based semantic segmentation models often encounter domain shift at the target semantic level,typically requiring retraining of the entire model to accommodate newly added se-mantic categories.However,urban vehicle-mounted laser point clouds usually contain an enormous number of points,making full model retraining highly resource-intensive.This article proposes a feature memory-based domain-adaptive semantic segmentation method for urban vehicle-mounted la-ser point clouds to address the target semantic domain shift between urban vehicle-mounted laser point clouds.When incorporating new semantic category data,our approach requires extracting only the features of the new semantic category,rather than retraining the entire semantic segmentation model.The proposed method achieves comparable semantic segmentation performance only a slight loss compared to full model retraining.

关键词

三维点云/车载激光/语义分割/域自适应/增量学习/计算机视觉

Key words

3D point cloud/vehicle mounted laser/semantic segmentation/domain adapta-tion/incremental learning/computer vision

分类

计算机与自动化

引用本文复制引用

陈子宜,叶锋..基于特征记忆库的三维点云域自适应语义分割[J].福建师范大学学报(自然科学版),2025,41(2):35-42,8.

基金项目

国家自然科学基金面上项目(62072106) (62072106)

福建省创新战略研究计划项目(2023R0156) (2023R0156)

福建师范大学学报(自然科学版)

OA北大核心

1000-5277

访问量0
|
下载量0
段落导航相关论文