域视角下基于深度学习的虚假新闻检测方法OA北大核心
Deep Learning for Fake News Detection Based on a Domain Perspective
以深度学习发展为线索,从域角度对假新闻检测模型进行分类,讨论虚假新闻检测方法的变化.首先在概述中分别对域角度下虚假新闻检测的定义、域适用数据集、假新闻检测评估指标及相关工作进行介绍;接着从域角度将虚假新闻检测模型归纳总结成 3 类,分别为源域与目标域相同、源域与目标域不同和忽略域信息 3 种类型的检测模型,并对 3 类模型以深度学习为线索进行梳理.
This paper follows the development of deep learning to classify fake news detection models from a domain perspective and examineses the evolution of detection methods First,the over-view introduces the definition of fake news detection from a domain perspective,domain-specific datasets,evaluation metrics for fake news detection,and related work.Then,based on the domain perspective,fake news detection models are categorized into three types:those with the same source and target domains,those with different source and target domains,and those ignoring domain in-formation.These three types of models are systematically reviewed with a focus on deep learning.
陈烁淳;黄发良;戴智鹏;黄恩博
南宁师范大学广西人机交互与智能决策重点实验室,广西 南宁 530199南宁师范大学广西人机交互与智能决策重点实验室,广西 南宁 530199南宁师范大学广西人机交互与智能决策重点实验室,广西 南宁 530199南宁师范大学广西人机交互与智能决策重点实验室,广西 南宁 530199
计算机与自动化
虚假新闻检测深度学习域视角人工智能
fake news detectiondeep learningdomain perspectiveartificial intelligence
《福建师范大学学报(自然科学版)》 2025 (2)
43-54,116,13
国家自然科学基金项目(62262045)广西重点研发计划项目(桂科AB22035072)
评论