| 注册
首页|期刊导航|飞控与探测|基于深度强化学习的飞行器过载和姿态智能控制研究

基于深度强化学习的飞行器过载和姿态智能控制研究

谭富威 何永宁 孙晓晖 朱震 张庆昊 卢俊国

飞控与探测2025,Vol.8Issue(1):25-31,7.
飞控与探测2025,Vol.8Issue(1):25-31,7.DOI:10.20249/j.cnki.2096-5974.2025.01.003

基于深度强化学习的飞行器过载和姿态智能控制研究

Intelligent Control of Aircraft Overload and Attitude Based on Deep Reinforcement Learning

谭富威 1何永宁 2孙晓晖 2朱震 1张庆昊 1卢俊国1

作者信息

  • 1. 上海交通大学电子信息与电气工程学院·上海·200240
  • 2. 上海航天控制技术研究所·上海·201109
  • 折叠

摘要

Abstract

This paper addresses the problem of intelligent control of aircraft overload and attitude in complex and changing environments.It proposes a distributed intelligent agent control method based on the Soft Actor-Critic(SAC)algorithm,establishes a framework of distributed efficient environment interaction for deep reinforcement learning algorithms,and designs an intelligent con-trol algorithm system for aircraft overloadand attitude.This approach increases the scale and dis-tribution of training data for reinforcement learning algorithms,thereby improving the performance and robustness of aircraft control algorithms.Experimental results in simulated envi-ronments demonstrate that the trained intelligent agents effectively control overloadsandattitudes in unmanned aerial vehicle simulations.The distributed SAC algorithm outperforms the original SAC algorithm in controlling unmanned aerial vehicles in simulation scenarios.

关键词

深度强化学习/无人飞行器/分布式SAC算法/过载控制/姿态控制

Key words

deep reinforcement learning/unmanned aerial vehicles/distributed SAC algorithm/overload control/attitude control

分类

计算机与自动化

引用本文复制引用

谭富威,何永宁,孙晓晖,朱震,张庆昊,卢俊国..基于深度强化学习的飞行器过载和姿态智能控制研究[J].飞控与探测,2025,8(1):25-31,7.

基金项目

中国航天科技集团有限公司第八研究院产学研合作基金(USCAST2022-34) (USCAST2022-34)

飞控与探测

2096-5974

访问量0
|
下载量0
段落导航相关论文