| 注册
首页|期刊导航|飞控与探测|信息非完备下飞行器智能主动防御制导方法

信息非完备下飞行器智能主动防御制导方法

倪炜霖 丘沛桓 柳明军 曾景岚 梁海朝

飞控与探测2025,Vol.8Issue(1):47-56,10.
飞控与探测2025,Vol.8Issue(1):47-56,10.DOI:10.20249/j.cnki.2096-5974.2025.01.006

信息非完备下飞行器智能主动防御制导方法

Intelligent Active Defense Guidance for Hypersonic Vehicle with Incomplete Information

倪炜霖 1丘沛桓 1柳明军 1曾景岚 1梁海朝1

作者信息

  • 1. 中山大学航空航天学院·深圳·518107
  • 折叠

摘要

Abstract

This paper investigates the active defense guidance problem for the hypersonic vehicle.The active defense guidance problem of the hypersonic vehicle is always subject to the limitations of incomplete observation information and observation noise in target-interceptor-defender scenari-os.To tackle this issue,this paper introduces a reinforcement learning algorithm and proposes a cooperative active defense guidance based on a convolutional deep Q-network algorithm.In view of the spatiotemporal continuity properties of hypersonic vehicles,a stacking mechanism is proposed to process the incomplete information.The mechanism utilizes temporal dimension extension to compensate for the lack of spatial motion state information.Based on this,the convolutional neural networks are further employed to perform feature extraction on the stacked information.Trained by the shaped continuous reward function,the deep Q-network relies on the extracted fea-ture tensor to obtain guidance.Finally,numerical experiments are performed to demonstrate the performance and robustness of the proposed active defense guidance,comparing it with the docu-mented method.

关键词

马尔可夫过程/强化学习/主动防御/制导方法

Key words

Markov process/reinforcement learning/active protection/guidance law

引用本文复制引用

倪炜霖,丘沛桓,柳明军,曾景岚,梁海朝..信息非完备下飞行器智能主动防御制导方法[J].飞控与探测,2025,8(1):47-56,10.

基金项目

国家自然科学基金(62003375,62103452) (62003375,62103452)

飞控与探测

2096-5974

访问量0
|
下载量0
段落导航相关论文