| 注册
首页|期刊导航|地质与资源|基于深度学习算法的致密储层薄片图像颗粒、孔隙智能表征方法研究

基于深度学习算法的致密储层薄片图像颗粒、孔隙智能表征方法研究

王金焕 许承武 乔宏亮 唐露 刘天勇 曲端刚 徐坚 孟英杰 李乙鸿

地质与资源2025,Vol.34Issue(1):61-69,9.
地质与资源2025,Vol.34Issue(1):61-69,9.DOI:10.13686/j.cnki.dzyzy.2025.01.007

基于深度学习算法的致密储层薄片图像颗粒、孔隙智能表征方法研究

Intelligent characterization of particles and pores in thin slice images of tight reservoirs based on deep learning algorithm

王金焕 1许承武 1乔宏亮 2唐露 1刘天勇 1曲端刚 1徐坚 1孟英杰 1李乙鸿3

作者信息

  • 1. 东北石油大学非常规油气研究院,黑龙江大庆 163000
  • 2. 中国石油长庆油田分公司第二采油厂,陕西西安 710000
  • 3. 榆林学院化学与化工学院,陕西榆林 719000
  • 折叠

摘要

Abstract

In the thin-section image analysis of tight sandstone reservoir,to solve the problems such as low accuracy and heavy work of traditional methods,TransUnet and Unet neural networks by combining Transformer with convolutional neural network(CNN)are used for efficient characterization of particles and pores.The TransUnet has excellent performance in particle characterization.The experiment shows that the intersection over union(IoU)reaches 0.86,with the recall rate of 0.824 and precision of 0.839,which is superior to traditional methods,proving its effectiveness in tight particle segmentation.The Unet shows efficient characterization of pores as well,with the IoU of 0.824,recall rate of 0.843 and precision of 0.953.Besides,experiment indicates that although porosity affects IoU,the model still maintains high efficiency and accuracy generally.These results fully demonstrate that deep learning method,especially TransUnet,is significantly effective in accurate segmentation of thin section images of complex tight reservoir,providing new ideas for the study of unconventional tight reservoir and showing its great potential in the field of geology.

关键词

深度学习/薄片分析/致密储层/粒度分析/TransUnet

Key words

deep learning/thin section analysis/tight reservoir/particle size analysis/TransUnet

分类

天文与地球科学

引用本文复制引用

王金焕,许承武,乔宏亮,唐露,刘天勇,曲端刚,徐坚,孟英杰,李乙鸿..基于深度学习算法的致密储层薄片图像颗粒、孔隙智能表征方法研究[J].地质与资源,2025,34(1):61-69,9.

基金项目

国家自然基金面上项目"原位加热下页岩储层孔-裂隙动态演化机制研究"(42172163). (42172163)

地质与资源

1671-1947

访问量7
|
下载量0
段落导航相关论文