| 注册
首页|期刊导航|南方农业学报|耦合NDVI与纹理时序特征的地块作物遥感分类

耦合NDVI与纹理时序特征的地块作物遥感分类

史洁宁 吴田军 黄启厅 骆剑承 任应超 徐欣雨

南方农业学报2025,Vol.56Issue(1):29-40,12.
南方农业学报2025,Vol.56Issue(1):29-40,12.DOI:10.3969/j.issn.2095-1191.2025.01.003

耦合NDVI与纹理时序特征的地块作物遥感分类

Land parcel crop remote sensing classification via coupleing with time series features of NDVI and texture

史洁宁 1吴田军 2黄启厅 3骆剑承 4任应超 5徐欣雨1

作者信息

  • 1. 长安大学理学院,陕西 西安 710064
  • 2. 长安大学土地工程学院,陕西 西安 710064
  • 3. 广西农业科学院农业科技信息研究所,广西 南宁 530007
  • 4. 中国科学院空天信息创新研究院遥感科学国家重点实验室,北京 100101||中国科学院大学资源与环境学院,北京 100049
  • 5. 中国科学院大学资源与环境学院,北京 100049||中国科学院空天信息创新研究院国家遥感应用工程技术研究中心,北京 100094
  • 折叠

摘要

Abstract

[Objective]To fully explore the temporal and spatial information of remote sensing images,accurately identified crop types on land parcels,which could provide reliable data support for crop type spatial distribution mapping,yield estimation and agricultural production decision-making,etc.[Method]Using Google Earth images as a reference,obtained the complete boundary of the study area of Kings County,California,United States,and used multi-temporal Sentinel-2 images to construct NDVI time series and time-texture two-dimensional representation maps as classification features.The NDVI time series captured the phenological changes of crop growth,while the time-texture two-dimensional representation maps captured the dynamic changes of spatial features over time.Then,convolutional neural network(CNN)+long short-term memory(LSTM)dual-stream architecture was used to combine temporal and spatial features to achieve accurate recognition of crops.[Result]The experimental results showed that compared with traditional methods that only used NDVI time series,the method incorporating texture time series greatly improved classification accuracy.The classification accuracy of the random forest increased from 0.89 to 0.93,and the classification accuracy of the sup-port vector machine increased from 0.88 to 0.93.This indicated that the texture time series with spatial features effectively improved crop classification ability.The overall accuracy of using the CNN+LSTM dual-stream architecture classification model for land parcel crop classification reached 0.95,in particular,the classification accuracy of grape and winter wheat improved greatly,F1 increased to 0.90 and 0.92 respectively.This demonstrated that,compared to traditional classifiers,the CNN+LSTM dual-stream architecture achieved more accurate land parcel crop recognition.[Suggestion]When con-ducting remote sensing classification of land parcels crops in areas with complex planting structures and similar crop growth habits,it is considered to incorporate texture time series features into the classification system and use a CNN+LSTM dual stream architecture to capture the temporal and spatial characteristics of crop growth separately.This method of integrating temporal and spatial information can improve the accuracy of crop classification on land parcels.

关键词

作物分布/地块尺度/归一化植被指数(NDVI)/时间序列/空间纹理特征/CNN+LSTM双流架构

Key words

crop distribution/land parcel scale/normalized difference vegetation index(NDVI)/time series/spa-tial texture features/CNN+LSTM dual-stream architecture

分类

农业科技

引用本文复制引用

史洁宁,吴田军,黄启厅,骆剑承,任应超,徐欣雨..耦合NDVI与纹理时序特征的地块作物遥感分类[J].南方农业学报,2025,56(1):29-40,12.

基金项目

国家重点研发计划项目(2021YFB3900905) (2021YFB3900905)

河北省中央引导地方科技发展资金项目(236Z0104G) National Key Research and Development Program of China(2021YFB3900905) (236Z0104G)

Hebei Central Government Guiding Local Science and Technology Development Project(236Z0104G) (236Z0104G)

南方农业学报

OA北大核心

2095-1191

访问量0
|
下载量0
段落导航相关论文