| 注册
首页|期刊导航|湖北民族大学学报(自然科学版)|YOLO系列算法在电力行业目标检测领域的应用与发展趋势

YOLO系列算法在电力行业目标检测领域的应用与发展趋势

张豪 高林 龚宇翔 伏德粟

湖北民族大学学报(自然科学版)2025,Vol.43Issue(1):86-93,8.
湖北民族大学学报(自然科学版)2025,Vol.43Issue(1):86-93,8.DOI:10.13501/j.cnki.42-1908/n.2024.12.011

YOLO系列算法在电力行业目标检测领域的应用与发展趋势

Application and Development Trends of YOLO Series Algorithms in the Field of Object Detection in the Power Industry

张豪 1高林 1龚宇翔 1伏德粟2

作者信息

  • 1. 湖北民族大学 智能科学与工程学院,湖北 恩施 445000
  • 2. 浙江龙源新能源发展有限公司,杭州 310000
  • 折叠

摘要

Abstract

In order to study the application of the you only look once(YOLO)series algorithms in the field of power industry object detection,and analyze their future development trends in the industry.First,the new YOLO version 10(YOLOv10)algorithm of network structure was analyzed.Second,the application of the YOLO series algorithms to object detection in the power industry from power generation,transmission,transformation to utilization were discussed.Finally,the development trends of the YOLO series algorithms were analyzed from two aspects,namely,the potential improvement direction and the fusion of large model.The study found that significant progress had been made in terms of detection speed and precision,with substantial potential demonstrated in defect detection,fault detection,equipment monitoring,intelligent management and security monitoring.However,in the complex background,the series of algorithms still had problem of poor detection precision.The YOLO series algorithms need to be gradually applied more widely in the power industry,and further optimizations in speed and precision will be needed to address practical challenges.

关键词

人工智能/YOLO系列算法/电力行业/目标检测/改进模型/未来趋势

Key words

artificial intelligence/YOLO series algorithms/power industry/object detection/improved model/future trends

分类

信息技术与安全科学

引用本文复制引用

张豪,高林,龚宇翔,伏德粟..YOLO系列算法在电力行业目标检测领域的应用与发展趋势[J].湖北民族大学学报(自然科学版),2025,43(1):86-93,8.

基金项目

国家自然科学基金项目(12464004,61562025) (12464004,61562025)

湖北省高等学校省级教学研究项目(2017387) (2017387)

湖北民族大学校内科研项目(XN2317). (XN2317)

湖北民族大学学报(自然科学版)

2096-7594

访问量0
|
下载量0
段落导航相关论文