| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|基于Transformer的轻量级单目标跟踪算法

基于Transformer的轻量级单目标跟踪算法

黄丹丹 张钰晨 陈广秋 刘智

华中科技大学学报(自然科学版)2025,Vol.53Issue(3):41-47,158,8.
华中科技大学学报(自然科学版)2025,Vol.53Issue(3):41-47,158,8.DOI:10.13245/j.hust.250458

基于Transformer的轻量级单目标跟踪算法

Lightweight single-object tracking algorithm based on Transformer

黄丹丹 1张钰晨 1陈广秋 1刘智2

作者信息

  • 1. 长春理工大学电子信息工程学院,吉林 长春 130022
  • 2. 长春理工大学空间光电技术国家地方联合工程研究中心,吉林 长春 130022
  • 折叠

摘要

Abstract

Lightweight single-object tracking algorithm based on Transformer was proposed to address the problems of low accuracy performance of target tracking algorithms in complex contexts.The algorithm adopted online time-series adaptive convolution to extract local features of the target,and at the same time introduced a lightweight global context module to extract global features,which jointly constructed an efficient target model.In order to cope with the problem of loss of target information in the similarity graph refinement,a lightweight feature augmentation module was constructed,which enhanced the model's ability to express the target without increasing the number of parameters of the overall network,so as to increase the accuracy of the model.Finally,the algorithm added a bounding box refinement module,which can better retain the boundary and scale information of the target and improve the tracking accuracy.The experimental results show that compared with the benchmark algorithm,the tracking accuracy and success rate of this paper's method are improved by 2.5%and 6.9%on the UAV123 dataset,8.8%and 5.9%on the LaSOT dataset,and 2.4%and 2.4%on the OTB100 dataset,respectively.

关键词

目标跟踪/Transformer/轻量级/特征增强/边界框细化

Key words

object tracking/Transformer/lightweight/feature enhancement/bounding box refinement

分类

计算机与自动化

引用本文复制引用

黄丹丹,张钰晨,陈广秋,刘智..基于Transformer的轻量级单目标跟踪算法[J].华中科技大学学报(自然科学版),2025,53(3):41-47,158,8.

基金项目

吉林省科技厅重点研发项目(20230201071GX). (20230201071GX)

华中科技大学学报(自然科学版)

OA北大核心

1671-4512

访问量0
|
下载量0
段落导航相关论文