| 注册
首页|期刊导航|集成技术|多实例学习在医学图像分析中的应用进展

多实例学习在医学图像分析中的应用进展

谢卓恒 伊鸣 黄新瑞

集成技术2025,Vol.14Issue(2):24-32,9.
集成技术2025,Vol.14Issue(2):24-32,9.DOI:10.12146/j.issn.2095-3135.20241111001

多实例学习在医学图像分析中的应用进展

Application Progress of Multi-instance Learning in Medical Image Analysis

谢卓恒 1伊鸣 2黄新瑞3

作者信息

  • 1. 北京大学基础医学院生物物理学系 北京 100191
  • 2. 北京大学神经科学研究所 北京 100191||神经科学教育部重点实验室/国家卫生健康委员会神经科学重点实验室 北京 100191
  • 3. 北京大学基础医学院生物物理学系 北京 100191||神经科学教育部重点实验室/国家卫生健康委员会神经科学重点实验室 北京 100191
  • 折叠

摘要

Abstract

Multiple-instance learning(MIL),as a weakly supervised learning method,has been widely applied in the field of medical image analysis in recent years.The paper reviews the progress of MIL applications in whole slide images,with a detailed analysis of its roles in tumor detection,subtype classification,and survival prediction.MIL holds unique advantages in weakly supervised learning,which can be optimized and extended through the introduction of new mechanisms to adapt to a broader range of application scenarios.The paper first reviews some widely used or uniquely advantageous MIL models,elaborating on their technical features and specific application contexts.Secondly,it introduces the application and technology advancements of MIL in multimodal medical image analysis.Finally,the current research progress of MIL is summarized,and its future development prospects are explored.

关键词

图像分析/多实例学习/医学图像/机器学习/深度学习

Key words

image analysis/multiple-instance learning/medical images/machine learning/deep learning

分类

基础医学

引用本文复制引用

谢卓恒,伊鸣,黄新瑞..多实例学习在医学图像分析中的应用进展[J].集成技术,2025,14(2):24-32,9.

基金项目

北京大学医学部教育教学研究课题项目(2022YB17) (2022YB17)

北京市自然科学基金面上项目(4242004) (4242004)

国家蛋白质科学研究(北京)设施北京大学分中心开放课题项目(KF-202402) (北京)

国家自然科学基金项目(32271053) (32271053)

北京市自然科学基金-海淀原始创新联合基金项目(L222016) This work is supported by Peking University Health Science Center Medical Education Research Funding Project(2022YB17),Beijing Natural Science Foundation(4242004),Open Research Fund of the National Center for Protein Sciences at Peking University in Beijing(KF-202402),National Natural Science Foundation of China(32271053),and Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(L222016) (L222016)

集成技术

2095-3135

访问量2
|
下载量0
段落导航相关论文