| 注册
首页|期刊导航|集成技术|睡眠监控中基于毫米波雷达心脏信号的非接触身份识别:一种深度卷积模型

睡眠监控中基于毫米波雷达心脏信号的非接触身份识别:一种深度卷积模型

段玉龙 胡巍 黄毅 陈垦

集成技术2025,Vol.14Issue(2):33-45,13.
集成技术2025,Vol.14Issue(2):33-45,13.DOI:10.12146/j.issn.2095-3135.20231030001

睡眠监控中基于毫米波雷达心脏信号的非接触身份识别:一种深度卷积模型

Non-contact Identification Recognition Based on Millimeter-Wave Radar Cardiac Signals During Sleep Monitoring:A Deep Convolution Model

段玉龙 1胡巍 2黄毅 2陈垦3

作者信息

  • 1. 中国科学院深圳先进技术研究院 深圳 518055||中国科学院大学 北京 100049||深圳市华屹医疗科技有限公司 深圳 518055
  • 2. 深圳市华屹医疗科技有限公司 深圳 518055
  • 3. 中国科学院深圳先进技术研究院 深圳 518055
  • 折叠

摘要

Abstract

Non-contact vital sign monitoring using millimeter-wave radar offers continuous and discreet identification.Cardiac motion is influenced by various complex factors,making it challenging to capture characteristic waveform information.To address this,the study employs millimeter-wave radar transmitting frequency modulated continuous waves to monitor and record cardiac data during sleep.Additionally,the paper proposes a deep convolutional neural network(CNN)-based identity recognition method using one-dimensional time-series radar signals of cardiac motion.The performance of this method is compared with three deep learning algorithms:long short-term memory Network,InceptionTime,and LSTformer.The final classification accuracies of all models exceed 85%on a dataset of heart signals collected in a resting state in the laboratory.Among the models,InceptionTime achieves the highest accuracy but requires the longest processing time.The long short-term memory and LSTformer models exhibit lower accuracy but faster processing.The CNN model proposed in this study demonstrates comparable accuracy to InceptionTime,while requiring less computational time,thus balancing accuracy and efficiency.

关键词

毫米波雷达/深度学习/身份识别

Key words

millimeter wave radar/deep learning/identification recognition

分类

电子信息工程

引用本文复制引用

段玉龙,胡巍,黄毅,陈垦..睡眠监控中基于毫米波雷达心脏信号的非接触身份识别:一种深度卷积模型[J].集成技术,2025,14(2):33-45,13.

基金项目

腾讯技术公益创投计划 This work is supported by Tencent Technology Philanthropy and Venture Capital Program ()

集成技术

2095-3135

访问量0
|
下载量0
段落导航相关论文