| 注册
首页|期刊导航|机械科学与技术|双通道交叉密集连接的滚动轴承故障诊断

双通道交叉密集连接的滚动轴承故障诊断

王庆荣 王媛 朱昌锋 周禹潼

机械科学与技术2025,Vol.44Issue(2):262-270,9.
机械科学与技术2025,Vol.44Issue(2):262-270,9.DOI:10.13433/j.cnki.1003-8728.20230188

双通道交叉密集连接的滚动轴承故障诊断

Fault Diagnosis of Rolling Bearings with Two-channel Cross-dense Connection

王庆荣 1王媛 1朱昌锋 2周禹潼1

作者信息

  • 1. 兰州交通大学电子与信息工程学院,兰州 730070
  • 2. 兰州交通大学交通运输学院,兰州 730070
  • 折叠

摘要

Abstract

To address the problems for traditional convolutional networks having inadequate learning capability of critical faults and low diagnostic accuracy,a dual-channel cross-densely connected fault diagnosis model(DCCNN)incorporating parallel ECA modules is proposed,which builds a dual-channel structure on the basis of a densely connected network,designs a multi-convolutional residual module and a multi-scale densely connected network to extract fault features and realize the interaction and integration of fault information.The network is embedded with a parallel channel attention module,which is reweighted by the channel attention mechanism to form multi-weighted features that can suppress the interference of noise and irrelevant signals from multiple perspectives.Finally,the training is conducted on the bearing data and gear data from Case Western Reserve University;the experimental results show that the accuracy of bearing fault recognition is 99.31%,which verifies that the model has adaptive diagnostic capability;the network model also maintains a good diagnostic performance in a noisy and loaded environment,and the proposed method has good generalization and noise immunity compared with other methods.

关键词

密集连接网络/注意力机制/故障诊断/残差模块

Key words

dense connected network/mechanism of attention/fault diagnosis/residual module

分类

计算机与自动化

引用本文复制引用

王庆荣,王媛,朱昌锋,周禹潼..双通道交叉密集连接的滚动轴承故障诊断[J].机械科学与技术,2025,44(2):262-270,9.

基金项目

国家自然科学基金项目(71961016)与甘肃省自然科学基金项目(20JR10RA214) (71961016)

机械科学与技术

OA北大核心

1003-8728

访问量0
|
下载量0
段落导航相关论文