| 注册
首页|期刊导航|有色金属科学与工程|基于Bi-LSTM与SA融合模型的多台阶高陡边坡变形预测

基于Bi-LSTM与SA融合模型的多台阶高陡边坡变形预测

曾森华 赵宇 叶腾飞 贺平 郝文拯

有色金属科学与工程2025,Vol.16Issue(1):125-134,10.
有色金属科学与工程2025,Vol.16Issue(1):125-134,10.DOI:10.13264/j.cnki.ysjskx.2025.01.014

基于Bi-LSTM与SA融合模型的多台阶高陡边坡变形预测

Deformation prediction of multi-step high and steep slope based on Bi-LSTM and SA fusion model

曾森华 1赵宇 2叶腾飞 3贺平 4郝文拯1

作者信息

  • 1. 核工业金华勘测设计院有限公司,浙江 金华 321000
  • 2. 国能北电胜利能源有限公司胜利露天煤矿,内蒙古 锡林浩特 026000
  • 3. 江西理工大学土木与测绘工程学院,江西 赣州 341000
  • 4. 核工业金华建设集团有限公司,浙江 金华 321000
  • 折叠

摘要

Abstract

Factors such as rock type,structural characteristics of the rock body,hydrogeology,natural environment,and mining activities easily affect the deformation of open pit slopes,resulting in a high degree of temporal correlation,time-varying,high-dimensional,and non-linear characteristics of the slope deformation monitoring data.Aiming at the problem of traditional slope deformation prediction models being unable to exploit the back-and-forth dependence of monitoring data series,a multi-step high steep slope deformation prediction model with a fusion network of bi-directional long and short-term memory network(Bi-LSTM)and self-attention mechanism(SA)was proposed,which takes the advantages of Bi-LSTM network mining the pre and post dependence of monitoring data and SA network analyzing the correlation between monitoring data.The effective prediction of multi-step high and steep slope deformation was realized.The results show that,under the same input conditions,compared with the prediction results of the BP neural network,LSTM model and Bi-LSTM model,the overall prediction error of the Bi-LSTM-SA fusion model for the deformation prediction results of multi-step high slope in three monitoring directions is smaller.The prediction results of Bi-LSTM-SA fusion model are closer to the measured results.The Bi-LSTM-SA fusion model has better prediction performance,stability and robustness.

关键词

露天矿/多台阶/高陡边坡/Bi-LSTM-SA/变形预测

Key words

open-pit mine/multi-step/high and steep slope/Bi-LSTM-SA/deformation prediction

分类

矿业与冶金

引用本文复制引用

曾森华,赵宇,叶腾飞,贺平,郝文拯..基于Bi-LSTM与SA融合模型的多台阶高陡边坡变形预测[J].有色金属科学与工程,2025,16(1):125-134,10.

基金项目

江西省教育厅科研资助项目(GJJ210859) (GJJ210859)

有色金属科学与工程

OA北大核心

1674-9669

访问量0
|
下载量0
段落导航相关论文