建筑模拟(英文版)2025,Vol.18Issue(1):141-159,19.DOI:10.1007/s12273-024-1199-1
Efficient feature selection for enhanced chiller fault diagnosis:A multi-source ranking information-driven ensemble approach
Efficient feature selection for enhanced chiller fault diagnosis:A multi-source ranking information-driven ensemble approach
摘要
关键词
chiller/feature selection/fault diagnosis/multi-source ranking information/machine learningKey words
chiller/feature selection/fault diagnosis/multi-source ranking information/machine learning引用本文复制引用
Zhanwei Wang,Penghua Xia,Jingjing Guo,Sai Zhou,Lin Wang,Yu Wang,Chunxiao Zhang..Efficient feature selection for enhanced chiller fault diagnosis:A multi-source ranking information-driven ensemble approach[J].建筑模拟(英文版),2025,18(1):141-159,19.基金项目
The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.52478087),China Postdoctoral Science Foundation(No.2024M750799,No.2024T170238)and China Scholarship Council(No.202308410494),Zhongyuan Outstanding Youth Talent Program(No.2022 Year),Youth Scientist Project in Henan Province(No.225200810087),the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.22HASTIT025),and the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.22IRTSTHN006). (No.52478087)