| 注册
首页|期刊导航|空气动力学学报|基于神经网络的线性稳定性分析方法

基于神经网络的线性稳定性分析方法

张二帅 刘建新 黄章峰

空气动力学学报2025,Vol.43Issue(2):60-74,15.
空气动力学学报2025,Vol.43Issue(2):60-74,15.DOI:10.7638/kqdlxxb-2024.0031

基于神经网络的线性稳定性分析方法

Linear stability analysis based on neural network

张二帅 1刘建新 1黄章峰1

作者信息

  • 1. 天津大学机械工程学院,天津 300072
  • 折叠

摘要

Abstract

The eNmethod,which has been widely used for predicting boundary-layer transition,necessitates a meticulous search for unstable modes by solving a large number of local boundary-layer stability problems,a process that can be very time-consuming.This paper proposes a novel neural network-based linear stability analysis(NN-LSA)method,that leverages convolutional neural networks to generate an initial guess of the frequency(ω),spanwise and streamwise wave numbers(β and αr),and growth rate(σmax)of the most unstable mode.Subsequently,the actual values are iteratively calculated based on this initial guess.The neural network model is trained using a flat plate dataset and the accuracy and computational efficiency of NN-LSA are validated by both flat plate and sharp cone test cases.The results demonstrate that the unstable wave parameters of NN are good agreement with linear stability theory.The LSA component,based on the predicted values provided by NN,can iteratively caculate the most unstable waves.Moreover,the computational time of the NN-LSA method is approximately 20 to 50 times lower than global search method,significantly improving computational efficiency and reducing the influence of human factors in the calculation process.The proposed NN-LSA method enables automated analysis of the linear stability of boundary layer flows and shows promising potential for practical applications.

关键词

基于神经网络的线性稳定性分析方法/卷积神经网络/eN方法/转捩预测

Key words

NN-LSA/convolutional neural network/eNmethod/transition prediction

分类

力学

引用本文复制引用

张二帅,刘建新,黄章峰..基于神经网络的线性稳定性分析方法[J].空气动力学学报,2025,43(2):60-74,15.

基金项目

国家自然科学基金重大项目(92052301) (92052301)

国家自然科学基金面上项目(12172252) (12172252)

国家自然科学基金(92271102) (92271102)

空气动力学学报

OA北大核心

0258-1825

访问量0
|
下载量0
段落导航相关论文