| 注册
首页|期刊导航|矿业科学学报|基于PSO-XGBoost的煤层断层智能识别方法研究

基于PSO-XGBoost的煤层断层智能识别方法研究

林朋 孙成 任珂 刘育林 李阳

矿业科学学报2025,Vol.10Issue(1):57-69,13.
矿业科学学报2025,Vol.10Issue(1):57-69,13.DOI:10.19606/j.cnki.jmst.2024933

基于PSO-XGBoost的煤层断层智能识别方法研究

Research on intelligent fault identification method of coalfield based on the PSO-XGBoost algorithm

林朋 1孙成 1任珂 2刘育林 1李阳1

作者信息

  • 1. 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
  • 2. 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083||空天信息大学(筹)遥感科学与技术学院,山东 济南 250299
  • 折叠

摘要

Abstract

In order to further improve the accuracy and efficiency of underground fault identification,an intelligent fault recognition model based on the extreme gradient boosting tree(XGBoost)machine learning algorithm was constructed for coal seam faults,combined with the particle swarm optimization(PSO)algorithm to optimize the model's related parameters.A forward model was established to verify the PSO-XGBoost model,and the classification prediction performance of the PSO-XGBoost model was compared with that of the PSO-RF and PSO-SVM models based on actual data collected from the Dian-dong mining area.The accuracy rate and log loss value were selected as the main evaluation indicators to evaluate the accuracy of the classification prediction models for each model.The results show that the PSO-XGBoost model has a high accuracy in fault structure identification;the PSO-XGBoost model has higher accuracy and better stability in fault identification.

关键词

断层识别/XGBoost/PSO/机器学习/参数优化

Key words

fault recognition/XGBoost/PSO/machine learning/parameters optimization

分类

矿山工程

引用本文复制引用

林朋,孙成,任珂,刘育林,李阳..基于PSO-XGBoost的煤层断层智能识别方法研究[J].矿业科学学报,2025,10(1):57-69,13.

基金项目

国家重点研发计划(2023YFC3008902) (2023YFC3008902)

矿业科学学报

OA北大核心

2096-2193

访问量0
|
下载量0
段落导航相关论文