| 注册
首页|期刊导航|雷达科学与技术|基于轻量化卷积神经网络车载雷达图像目标识别方法

基于轻量化卷积神经网络车载雷达图像目标识别方法

李家强 汪星宇 陈金立 姚昌华

雷达科学与技术2025,Vol.23Issue(1):82-91,100,11.
雷达科学与技术2025,Vol.23Issue(1):82-91,100,11.DOI:10.3969/j.issn.1672-2337.2025.01.009

基于轻量化卷积神经网络车载雷达图像目标识别方法

Object Recognition Method for Automotive Radar Images Based on Lightweight Convolutional Neural Network

李家强 1汪星宇 1陈金立 1姚昌华1

作者信息

  • 1. 南京信息工程大学电子与信息工程学院,江苏 南京 210044
  • 折叠

摘要

Abstract

To address the issues of blurry details and small target proportions in automotive millimeter-wave radar images,as well as the complexity of convolutional neural network models that are difficult to deploy on the edge,an auto-motive radar image target recognition method based on lightweight convolutional neural network YOLOv5s is proposed.First,a lightweight decoupled head is designed by incorporating Ghost convolution,enabling parallel processing of detection and classification tasks.Next,the Concat_att module enhanced with attention mechanism is designed,and a more boundary-sensitive network loss function EIoU Loss is introduced to fully extract detailed information of small objects in feature maps,accelerating network convergence and improving accuracy.Finally,Slim pruning is applied to further compress the storage space of the model and reduce computational complexity.The experimental results indicate that when the model size is reduced to 76.8%of the original YOLOv5s network,the mAP@0.5 and mAP@0.5:0.95 are respectively improved by 2.7%and 2.8%compared to the baseline network.This method is suitable for small target detection and meets both the precision and real-time requirements of target recognition,making it appropriate for deploy-ment in automotive embedded systems.

关键词

雷达图像/YOLOv5s/轻量化/注意力机制/模型剪枝

Key words

radar images/YOLOv5s/lightweight/attention mechanism/model pruning

分类

电子信息工程

引用本文复制引用

李家强,汪星宇,陈金立,姚昌华..基于轻量化卷积神经网络车载雷达图像目标识别方法[J].雷达科学与技术,2025,23(1):82-91,100,11.

基金项目

国家自然科学基金(No.62071238) (No.62071238)

雷达科学与技术

OA北大核心

1672-2337

访问量0
|
下载量0
段落导航相关论文