| 注册
首页|期刊导航|农机化研究|基于深度强化学习的除草机器臂路径规划研究

基于深度强化学习的除草机器臂路径规划研究

杨卜 邬鑫 张梦磊 冯松科

农机化研究2025,Vol.47Issue(5):15-21,7.
农机化研究2025,Vol.47Issue(5):15-21,7.DOI:10.13427/j.issn.1003-188X.2025.05.003

基于深度强化学习的除草机器臂路径规划研究

Path Planning of Weeding Robot Arm Based on Deep Reinforcement Learning

杨卜 1邬鑫 1张梦磊 1冯松科1

作者信息

  • 1. 西北农林科技大学机械与电子工程学院,陕西杨凌 712100
  • 折叠

摘要

Abstract

The current state of research on active seedling avoidance path planning in the field of intelligent weeding ro-bots is inadequate.To address this issue,a new path planning algorithm was developed for gradient weeding robot manip-ulators,utilizing an improved depth deterministic strategy.The algorithm was enhanced through the incorporation of re-ward equipotential surfaces,which improved the performance of the DDPG algorithm.To validate the algorithm,a simu-lation training environment was constructed using CoppeliaSim software,where the algorithm was trained and verified.The results showed 93.36%success rate for weeding and 2.79%rate of seed injury.A test platform was built to conduct weeding tests in an actual environment,where the algorithm achieved 91.50%success rate for weeding and 2.82%rate of seed injury.These experimental findings demonstrated the efficacy of the proposed algorithm in reducing the damage to crop.

关键词

除草机器人/深度强化学习/路径规划/人工势场法

Key words

weeding robot/deep reinforcement learning/path planning/artificial potential field method

分类

农业工程

引用本文复制引用

杨卜,邬鑫,张梦磊,冯松科..基于深度强化学习的除草机器臂路径规划研究[J].农机化研究,2025,47(5):15-21,7.

基金项目

国家青年自然科学基金项目(51804260) (51804260)

农机化研究

OA北大核心

1003-188X

访问量0
|
下载量0
段落导航相关论文