| 注册
首页|期刊导航|内蒙古民族大学学报(自然科学版)|中低能质子与铜反应截面的贝叶斯神经网络计算研究

中低能质子与铜反应截面的贝叶斯神经网络计算研究

黄永顺 黄美容 张苏雅拉吐

内蒙古民族大学学报(自然科学版)2025,Vol.40Issue(2):16-22,7.
内蒙古民族大学学报(自然科学版)2025,Vol.40Issue(2):16-22,7.DOI:10.14045/j.cnki.15-1220.2025.02.003

中低能质子与铜反应截面的贝叶斯神经网络计算研究

Bayesian Neural Network Calculation of the Cross-section of the Reaction Between Medium and Low Energy Protons and Copper

黄永顺 1黄美容 1张苏雅拉吐1

作者信息

  • 1. 内蒙古民族大学物理与电子信息学院,内蒙古 通辽 028043||内蒙古民族大学核物理研究所,内蒙古 通辽 028043
  • 折叠

摘要

Abstract

The product cross-section data from proton-induced spallation reactions serves as a crucial founda-tion for many nuclear reaction applications.However,due to the complexity of the systems involved and the wide en-ergy range of spallation reactions and the reaction energy exceeding 3-4 orders of magnitude,current theoretical models still face limitations in accurately predicting cross-sections.In order to obtain higher prediction accuracy,Bayesian Neural Networks(BNN)method was used to model and analyze the spallation reaction cross-sections of protons with a copper(Cu)target.Compared with traditional methods,BNN can provide high-precision predictions by learning from experimental data and quantify the uncertainty in predictions.Based on experimental data from the EXFOR database,the constructed BNN model accurately predicted reaction cross-sections across multiple energy ranges,and is verified with experimental data.Results show that the BNN model demonstrates excellent predictive capability across a broad energy spectrum and,especially in regions with sparse data,effectively quantifies the un-certainty through reasonable confidence intervals.

关键词

贝叶斯神经网络/余核截面/natCu

Key words

Bayesian Neural Networks/residual core cross-section/natCu

分类

数理科学

引用本文复制引用

黄永顺,黄美容,张苏雅拉吐..中低能质子与铜反应截面的贝叶斯神经网络计算研究[J].内蒙古民族大学学报(自然科学版),2025,40(2):16-22,7.

基金项目

国家自然科学基金项目(12365018) (12365018)

内蒙古自治区高等学校青年科技英才支持计划项目(NJYT23109) (NJYT23109)

内蒙古自治区高等学校创新团队发展支持计划项目(NMGIRT2217) (NMGIRT2217)

内蒙古自治区直属高校基本科研业务费项目(GXKY22061) (GXKY22061)

内蒙古自治区自然科学基金项目(2023MS01005) (2023MS01005)

内蒙古民族大学学报(自然科学版)

1671-0185

访问量0
|
下载量0
段落导航相关论文