| 注册
首页|期刊导航|内蒙古民族大学学报(自然科学版)|基于改进YOLOv10n的玉米叶片病害检测研究

基于改进YOLOv10n的玉米叶片病害检测研究

党珊珊 白明宇 路扬 潘春宇 赵晨雨 乔世成

内蒙古民族大学学报(自然科学版)2025,Vol.40Issue(2):69-76,8.
内蒙古民族大学学报(自然科学版)2025,Vol.40Issue(2):69-76,8.DOI:10.14045/j.cnki.15-1220.2025.02.010

基于改进YOLOv10n的玉米叶片病害检测研究

Research on Maize Leaf Disease Detection Based on Improved YOLOv10n

党珊珊 1白明宇 1路扬 1潘春宇 1赵晨雨 1乔世成1

作者信息

  • 1. 内蒙古民族大学计算机科学与技术学院,内蒙古 通辽 028043
  • 折叠

摘要

Abstract

Aiming at the problems of insufficient recognition accuracy and excessive parameter amount of the existing target detection models in the maize leaf disease detection task,an improved model for maize leaf disease detection based on YOLOv10n is proposed.By comparing the classical models such as YOLOv5n,YOLOv6n,YO-LOv8n,and YOLOv9t,it is found that YOLOv10n has the highest detection accuracy.The original dataset is expand-ed by using offline enhancement technology,which significantly improves the detection accuracy of the model.The introduction of the CBAM attention mechanism in the backbone network enhances the model's to focus on important features.Compared with the original YOLOv10n algorithm,the enhanced YOLOv10n algorithm's accuracy has in-creased by 7.3%,Recall has increased by 5.5%,and mAP@0.5 has increased by 10.9%.Compared with the original YOLOv10n,the accuracy of YOLOv10n-Enhance algorithm by adding CBAM attention mechanism has increased by 9.5%,and Recall has increased by 6.7%,with mAP@0.5 reaching 93.9%.The improved YOLOv10n algorithm signif-icantly improves the detection of maize leaf diseases without increasing the number of parameters and computational complexity.

关键词

病害/YOLOv10n/注意力机制

Key words

disease/YOLOv10n/attention mechanisms

分类

农业科技

引用本文复制引用

党珊珊,白明宇,路扬,潘春宇,赵晨雨,乔世成..基于改进YOLOv10n的玉米叶片病害检测研究[J].内蒙古民族大学学报(自然科学版),2025,40(2):69-76,8.

基金项目

国家自然科学基金项目(62162049) (62162049)

内蒙古自治区直属高校基本科研业务费项目(GXKY23Z015) (GXKY23Z015)

内蒙古民族大学博士科研启动基金项目(BS658) (BS658)

内蒙古民族大学学报(自然科学版)

1671-0185

访问量0
|
下载量0
段落导航相关论文