| 注册
首页|期刊导航|全球定位系统|果蝇算法优化的GLSSVM高程拟合模型

果蝇算法优化的GLSSVM高程拟合模型

谢洋洋

全球定位系统2025,Vol.50Issue(1):69-72,4.
全球定位系统2025,Vol.50Issue(1):69-72,4.DOI:10.12265/j.gnss.2024059

果蝇算法优化的GLSSVM高程拟合模型

GLSSVM elevation fitting model optimized by fruit fly optimization algorithm

谢洋洋1

作者信息

  • 1. 江苏省基础地理信息中心,南京 210013
  • 折叠

摘要

Abstract

Aiming at the limitation of random parameter selection in least squares support vector machine(LSSVM)elevation fitting models,the fruit fly optimization algorithm(FOA)is introduced into the grey least square support vector machine(GLSSVM)elevation fitting model,then a GLSSVM fitting model based on FOA was established.In order to verify the validity of the proposed model,a case study is carried out and compared with GLSSVM and LSSVM.The results show that the proposed model converges faster and has higher accuracy,which provides a new approach for GNSS elevation fitting.

关键词

最小二乘支持向量机(LSSVM)/果蝇优化算法(FOA)/GNSS高程拟合/模型优化

Key words

least square support vector machine(LSSVM)/fruit fly optimization algorithm(FOA)/GNSS elevation fitting/model optimization

分类

测绘与仪器

引用本文复制引用

谢洋洋..果蝇算法优化的GLSSVM高程拟合模型[J].全球定位系统,2025,50(1):69-72,4.

基金项目

江苏省自然资源科技计划项目(2023008) (2023008)

全球定位系统

1008-9268

访问量0
|
下载量0
段落导航相关论文