| 注册
首页|期刊导航|热带气象学报|基于DSTFN(Deep Spatio-Temprral Fusion Network)模型的热带气旋轨迹预测方法

基于DSTFN(Deep Spatio-Temprral Fusion Network)模型的热带气旋轨迹预测方法

方巍 杜娟 齐媚涵 胡鹏昱

热带气象学报2024,Vol.40Issue(6):882-895,14.
热带气象学报2024,Vol.40Issue(6):882-895,14.DOI:10.16032/j.issn.1004-4965.2024.077

基于DSTFN(Deep Spatio-Temprral Fusion Network)模型的热带气旋轨迹预测方法

Tropical Cyclone Track Prediction Method Based on DSTFN Model

方巍 1杜娟 2齐媚涵 2胡鹏昱3

作者信息

  • 1. 南京信息工程大学计算机学院/数字取证教育部工程研究中心,江苏 南京 210044||南京气象科技创新研究院中国气象局交通气象重点开放实验室,江苏 南京 210041||南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京 210044||苏州大学江苏省计算机信息处理技术重点实验室,江苏 苏州 215000
  • 2. 南京信息工程大学计算机学院/数字取证教育部工程研究中心,江苏 南京 210044
  • 3. 上海农林职业技术学院,上海 201699
  • 折叠

摘要

Abstract

In the context of global climate change,more and more regions are facing the threat of tropical cyclones.Therefore,accurate prediction of changes in the tracks of tropical cyclones is essential for meteorological warning and disaster reduction.However,existing tropical cyclone prediction methods based on deep learning have limitations in modeling the spatio-temporal correlation of tropical cyclones.In the present study,we proposed a new deep spatio-temporal fusion network(DSTFN)model to improve the prediction accuracy and stability of tropical cyclone tracks.We developed the CaConvNeXt-GRU model,which effectively integrated the ConvNeXt model and the gated recurrent unit,to extract complex nonlinear spatio-temporal features in the 3D time series data of tropical cyclones.Meanwhile,the convolutional block attention module was introduced to automatically focus on the features that were affected more heavily by different isobaric surfaces on tropical cyclones.Moreover,we designed a staged training strategy to realize the effective integration of different modules through pre-training,joint training,and overall training.To evaluate the proposed model,we conducted extensive experiments on the International Best Track Archive for Climate Stewardship(IBTrACS)and the ERA5 dataset.Overall,in predicting tropical cyclone tracks for the next 24 hours,the DSTFN model reduced the average prediction error by about 13.71 km compared to existing tropical cyclone track prediction models based on deep learning.

关键词

热带气旋/路径预测/DSTFN模型/CaConvNeXt-GRU模型/时空序列预测

Key words

tropical cyclone/path prediction/DSTFN model/CaConvNeXt-GRU model/spatio-temporal series prediction

分类

天文与地球科学

引用本文复制引用

方巍,杜娟,齐媚涵,胡鹏昱..基于DSTFN(Deep Spatio-Temprral Fusion Network)模型的热带气旋轨迹预测方法[J].热带气象学报,2024,40(6):882-895,14.

基金项目

国家自然科学基金项目(42075007) (42075007)

苏州大学江苏省计算机信息处理技术重点实验室开放研究基金(KJS2275) (KJS2275)

中国气象局交通气象重点开放实验室开放研究基金(BJG202306) (BJG202306)

中国气象局流域强降水重点开放实验室开放研究基金(2023BHR-Y14) (2023BHR-Y14)

江苏省研究生科研与实践创新计划项目(SJCX24_0476、SJCX24_0477)共同资助 (SJCX24_0476、SJCX24_0477)

热带气象学报

OA北大核心CSTPCD

1004-4965

访问量0
|
下载量0
段落导航相关论文