| 注册
首页|期刊导航|热带气象学报|一种基于深度学习的城市道路积水内涝图像识别方法

一种基于深度学习的城市道路积水内涝图像识别方法

张志坚 伍光胜 黎洁仪 陈雨欣 张静 孙伟忠

热带气象学报2024,Vol.40Issue(6):918-930,13.
热带气象学报2024,Vol.40Issue(6):918-930,13.DOI:10.16032/j.issn.1004-4965.2024.080

一种基于深度学习的城市道路积水内涝图像识别方法

A Method for Urban Road Waterlogging Image Recognition Based on Deep Learning

张志坚 1伍光胜 2黎洁仪 1陈雨欣 1张静 3孙伟忠1

作者信息

  • 1. 广州市突发事件预警信息发布中心,广东 广州 511430
  • 2. 广州市突发事件预警信息发布中心,广东 广州 511430||粤港澳大湾区气象研究院,广东 广州 510641||广州市粤港澳大湾区气象智能装备研究中心,广东 广州 511430
  • 3. 广州市气象台,广东 广州 511430
  • 折叠

摘要

Abstract

To enhance the monitoring and early warning capabilities for waterlogging in megacities,this study addressed the low practicality and insufficient real-time performance of existing waterlogging detection methods through the use of a high-density network of over 90,000 public surveillance cameras in Guangzhou.A road waterlogging image recognition method was established based on the RTMDet model,a deep-learning-based object detection algorithm.Multithreading technology was employed to efficiently acquire images from a large number of cameras.The RTMDet model with instance segmentation capabilities enables rapid detection and identification of waterlogging areas.A set of 8463 images,collected between August 15,2018,and May 23,2020,was used to develop the recognition model.The model was then validated and evaluated using 6106 images collected between June 25,2020,and September 10,2022.The results indicate that during intense precipitation,the model can accurately identify images of obvious waterlogging and the locations of these waterlogged areas.After data cleaning,the overall recognition accuracy of the model was 86.60%.Light interference and image blurring due to precipitation were the two primary factors causing false alarms.Currently,this algorithm has been implemented in Guangzhou's meteorological impact forecasting verification and meteorological decision-making support platform,providing effective support for automatic monitoring and early warning of urban waterlogging.It also offers valuable insights for water management,transportation,and other relevant sectors.

关键词

内涝/图像识别/深度学习/公共监控视频

Key words

waterlogging/image recognition/deep learning/public surveillance camera

分类

天文与地球科学

引用本文复制引用

张志坚,伍光胜,黎洁仪,陈雨欣,张静,孙伟忠..一种基于深度学习的城市道路积水内涝图像识别方法[J].热带气象学报,2024,40(6):918-930,13.

基金项目

广州市科技计划项目(201803030014) (201803030014)

广州市科技重点研发计划(广州市智慧气象科技协同创新中心建设项目2023B04J0704)共同资助 (广州市智慧气象科技协同创新中心建设项目2023B04J0704)

热带气象学报

OA北大核心CSTPCD

1004-4965

访问量7
|
下载量0
段落导航相关论文