弛豫铁电薄膜储能特性的调控策略OA北大核心
Strategies for regulating energy storage characteristics of relaxor ferroelectric films
弛豫铁电薄膜电容器具有功率密度高、充放电速度快、质量轻、体积小和易集成等特点,符合微电子器件高储能密度的发展趋势.目前,弛豫铁电薄膜的可释放能量密度已经超过100 J/cm3,充放电效率达90%以上,且击穿电场强度较高,抗疲劳特性优异,初步形成实用价值.基于弛豫铁电薄膜的储能原理,从实验角度出发,探讨了弛豫铁电薄膜储能特性的调控方法(元素掺杂、复合结构与固溶体),从微观、介观与宏观尺度探讨了3种调控方法的物理机制,及在储能特性提升方面的优势与局限性.分析认为元素掺杂虽易实现,但限于调控维度低,对弛豫铁电薄膜储能特性的改善并不理想.复合结构利用两种或多种材料相关性能的近似线性叠加,对储能特性改善有了进一步提高,但宏观层间耦合的晶格失配导致缺陷密度增大,降低了薄膜的击穿强度与可靠性.固溶体策略通过将不同材料体系在微观晶格尺度进行匹配,高效调控出多相共存与极性纳米微区,显著提升了弛豫铁电薄膜的储能特性.研究成果可为弛豫铁电薄膜储能特性的提升提供全面的研究策略指导.
Relaxor ferroelectric film capacitors exhibit several advantageous characteristics,including high power density,rapid charge and discharge rates,lightweight construction,compact size,and ease of integration,aligning with the ongoing trend toward high energy density in microelectronic devices.Currently,the recoverable energy density in the relaxor ferroelectric films has exceeded 100 J/cm3,and their charge-discharge efficiencies are higher than 90%.Furthermore,these films demonstrate high breakdown strength and exceptional fatigue resistance,suggesting the preliminary formation of practical value.Based on the energy storage principles of relaxor ferroelectric films,this paper investigates methods for regulating energy storage characteristics of these films from experimental perspective,including element doping,composite structures,and solid solutions.It also explores the physical mechanisms underlying these three regulatory methods at the microscopic,mesoscopic,and macroscopic scales,as well as their advantages and limitations in enhancing energy storage characteristics.The analysis indicates although element doping is easy to achieve,its regulatory scope is limited,and the improvement of the energy storage characteristics relaxor ferroelectric films is not ideal.The composite structure,by using the approximate linear superposition of the related properties of two or more materials,has further improved the energy storage characteristics.However,the lattice mismatch caused by the macro-level interlayer coupling leads to an increase in defect density,which reduces the breakdown strength and reliability of the film.In contrast,the solid solution strategy,by matching different material systems at the microscopic lattice scale,effectively regulates the coexistence of multiple phases and polar nanoregions,significantly enhancing the energy storage characteristics of relaxor ferroelectric films.The research results can provide comprehensive research strategy guidance for improving the energy storage characteristics of relaxor ferroelectric films.
吴琼;董蜀湘
清华大学材料学院,新型陶瓷与精细工艺国家重点实验室,北京 100084||乌镇实验室,浙江 嘉兴 314500||深圳大学高等研究院,广东 深圳 518051深圳大学高等研究院,广东 深圳 518051||北京大学材料科学与工程学院,北京 100871
动力与电气工程
材料物理与化学电容器弛豫铁电薄膜储能可释放能量密度充放电效率元素掺杂复合结构固溶体
materials physics and chemistrycapacitorsrelaxor ferroelectric filmenergy storagerecoverable energy densitycharge-discharge efficiencyelement dopingcomposite structuresolid solution
《深圳大学学报(理工版)》 2025 (2)
123-137,15
National Key Research and Development Program of China(2022YFB32057002022YFB3204000) 国家重点研发计划资助项目(2022YFB32057002022YFB3204000)
评论