同济大学学报(自然科学版)2025,Vol.53Issue(3):402-409,8.DOI:10.11908/j.issn.0253-374x.24008
全自动无人驾驶列车障碍物检测的轨道区域检测算法
Track Area Detection Algorithm for Obstacle Detection of Fully Automatic Driverless Train
摘要
Abstract
A non-contact detection algorithm based on vision sensors is proposed to address the issue of track area segmentation in the context of fully automatic driverless trains for rail transit.The algorithm uses frame difference threshold and grayscale distribution feature extraction methods to perform scene recognition and labeling of video image data.Image preprocessing and edge detection of the track contour are completed by an adaptive edge detection module,which adjusts the parameter input based on the results of image scene recognition.The track area boundary search module consists of two submodules:the sliding pane search submodule and the passband search submodule,based on the sliding pane-like approach,in order to extract the track outline curve.Finally,a Kalman filter is used to improve the accuracy and robustness of the detection results.The experimental results show that the algorithm exhibits strong detection performance on track boundaries.关键词
轨道交通/全自动无人驾驶/障碍物检测/轨道区域分割/机器视觉Key words
rail transit/fully automatic driverless system/obstacle detection/track area segmentation/machine vision分类
交通运输引用本文复制引用
盛峰,沈拓,谢远翔,张颖,曾小清,朱明昌,张轩雄..全自动无人驾驶列车障碍物检测的轨道区域检测算法[J].同济大学学报(自然科学版),2025,53(3):402-409,8.基金项目
校企战略性合作专项高速铁路绿色智能施工关键技术研究(kh0160020230946、LQKY2022-01-1) (kh0160020230946、LQKY2022-01-1)
国家重点研发计划(2022YFB4300501) (2022YFB4300501)
上海市科委课题(23DZ2204900) (23DZ2204900)