| 注册
首页|期刊导航|同济大学学报(自然科学版)|基于双向长短时记忆网络的地铁应急知识抽取与推理

基于双向长短时记忆网络的地铁应急知识抽取与推理

叶雨涛 王鹏玲 徐瑞华 肖晓芳 葛健豪

同济大学学报(自然科学版)2025,Vol.53Issue(3):420-429,10.
同济大学学报(自然科学版)2025,Vol.53Issue(3):420-429,10.DOI:10.11908/j.issn.0253-374x.23253

基于双向长短时记忆网络的地铁应急知识抽取与推理

Metro Emergency Knowledge Extraction and Knowledge Reasoning Based on BiLSTM-CRF

叶雨涛 1王鹏玲 1徐瑞华 1肖晓芳 1葛健豪1

作者信息

  • 1. 同济大学 交通运输工程学院,上海 201804||同济大学 上海市轨道交通结构耐久与系统安全重点实验室,上海 201804||同济大学 上海市多网多模式轨道交通协同创新中心,上海 201804
  • 折叠

摘要

Abstract

To address issues such as the unclear sequence of procedures and ambiguity in the personnel responsible for executing the emergency response procedures in text-based metro emergency response processes,this paper proposes a knowledge extraction and knowledge reasoning method for metro emergency response procedures based on knowledge graph of bidirectional long short-term memory-conditional random field(BiLSTM-CRF).First,the BiLSTM-CRF method is used to identify the named entity of the text data of the metro emergency response process,and complete the knowledge extraction of the text data.Then,the TransD model is selected to conduct knowledge inference on the identified entity data,thereby completing the construction of a knowledge graph with entities and attribute pairs as nodes and relational pairs as edges.Finally,the Neo4j graph database is used to visualize and analyze the knowledge graph of metro emergency response process.The research results show that the precision,recall,and F1 value of the knowledge extraction model based on BiLSTM-CRF have all reached more than 90%,and the accuracy of the inference results of the TransD model based on BiLSTM-CRF has increased by 22.92%,ensuring the accuracy of knowledge graph construction and providing decision support for subway emergency management.

关键词

地铁应急处置/知识图谱/条件随机场的双向长短时网络/TransD模型/知识抽取

Key words

metro emergency response/knowledge graph/bidirectional long short-term memory-conditional random field(BiLSTM-CRF)/TransD model/knowledge extraction

分类

交通工程

引用本文复制引用

叶雨涛,王鹏玲,徐瑞华,肖晓芳,葛健豪..基于双向长短时记忆网络的地铁应急知识抽取与推理[J].同济大学学报(自然科学版),2025,53(3):420-429,10.

基金项目

国家自然科学基金联合基金(U2368216) (U2368216)

国家自然科学基金青年科学基金(72101184) (72101184)

上海市自然科学基金(23ZR1467400) (23ZR1467400)

同济大学学报(自然科学版)

OA北大核心

0253-374X

访问量0
|
下载量0
段落导航相关论文