| 注册
首页|期刊导航|统计与决策|基于横截面和纵向信息的函数型多重插补方法

基于横截面和纵向信息的函数型多重插补方法

高海燕 李唯欣

统计与决策2025,Vol.41Issue(5):37-42,6.
统计与决策2025,Vol.41Issue(5):37-42,6.DOI:10.13546/j.cnki.tjyjc.2025.05.006

基于横截面和纵向信息的函数型多重插补方法

Functional Multiple Imputation Method Based on Cross-sectional and Longitudinal Information

高海燕 1李唯欣2

作者信息

  • 1. 兰州财经大学 统计与数据科学学院||甘肃省数字经济与社会计算科学重点实验室,兰州 730020
  • 2. 兰州财经大学 统计与数据科学学院
  • 折叠

摘要

Abstract

Functional data is a type of complex nonlinear structured data,which is often presented and stored in the form of functions(curves).However,in the process of data collection,missing data is inevitable.This paper proposes a Missforest Combin-ing Gaussian Processes(MFGP)method based on cross-sectional and longitudinal information.Inspired by the ensemble models,the method integrates imputation based on Missforest model(MF)with prediction based on Gaussian processes(GP),effectively in-tegrates cross-sectional and longitudinal information of functional data to enhance imputation accuracy.Meanwhile,the results of simulation data interpolation experiment and stock data example analysis show that under the missing ratio of 5%to 55%,MFGP has a significant imputation advantage over seven other imputation methods,namely mean imputation,Hot.deck,SFI,HFI,MICE,MF and GP,and the obtained data is more consistent with the original data.

关键词

机器学习/缺失数据/多重插补/集成模型

Key words

machine learning/missing data/multiple imputation/ensemble model

分类

数理科学

引用本文复制引用

高海燕,李唯欣..基于横截面和纵向信息的函数型多重插补方法[J].统计与决策,2025,41(5):37-42,6.

基金项目

国家社会科学基金资助项目(19XTJ002) (19XTJ002)

甘肃省自然科学基金资助项目(23JRRA1186) (23JRRA1186)

甘肃省高校青年博士支持项目(2025QB-058) (2025QB-058)

统计与决策

OA北大核心

1002-6487

访问量0
|
下载量0
段落导航相关论文