| 注册
首页|期刊导航|土木工程与管理学报|基坑地墙渗漏指标预测及风险等级评价方法

基坑地墙渗漏指标预测及风险等级评价方法

张迪 孙峰 叶晓剑 曹刚 邱子琪 曹子君 洪义 王立忠 王立林

土木工程与管理学报2025,Vol.42Issue(1):20-26,7.
土木工程与管理学报2025,Vol.42Issue(1):20-26,7.DOI:10.13579/j.cnki.2095-0985.2025.20240267

基坑地墙渗漏指标预测及风险等级评价方法

Prediction of Leakage Index and Evaluation of Leakage Risk for Foundation Pit Wall

张迪 1孙峰 1叶晓剑 1曹刚 2邱子琪 3曹子君 4洪义 3王立忠 3王立林3

作者信息

  • 1. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063
  • 2. 杭州富阳城市建设投资集团有限公司,浙江 杭州 311400
  • 3. 浙江大学 海南研究院,海南 海口 572025
  • 4. 西南交通大学 智慧城市与交通学院(城市轨道交通学院),四川 成都 611756
  • 折叠

摘要

Abstract

Clean energy sources such as solar and wind power require the use of limited surface space,while human's development and utilization of underground space indirectly promote the growth of clean energy.This paper focuses on the issue of foundation pit wall leakage in excavation accidents.Using the finite element software ABAQUS,1000 different leakage scenarios were simulated,and data on three physical quantities—pore water pressure in observation wells,lateral displacement of founda-tion pit walls,and ground settlement were extracted over a 7-day period in these environments.After dimensionality reduction using principal component analysis(PCA),the data were used to construct four types of neural network models:artificial neural network(ANN),recurrent neural network(RNN),long short-rerm memory(LSTM),and gated recurrent unit(GRU).These models were em-ployed to predict key variables of excavation leakage and assess the risk levels of these variables.The paper also explores the use of decision tree and random forest for predicting leakage risk levels.Com-paring the regression and classification approaches for risk assessment,the classification method quickly predicts the leakage levels,while the regression method predicts the key variables of leakage.

关键词

基坑渗漏/安全预警/机器学习/神经网络/主成分分析

Key words

foundation pit leakage/safety warning/machine learning/neural network/principal component analysis

分类

交通工程

引用本文复制引用

张迪,孙峰,叶晓剑,曹刚,邱子琪,曹子君,洪义,王立忠,王立林..基坑地墙渗漏指标预测及风险等级评价方法[J].土木工程与管理学报,2025,42(1):20-26,7.

基金项目

国家自然科学基金(52238008 ()

52122906) ()

土木工程与管理学报

2095-0985

访问量0
|
下载量0
段落导航相关论文