| 注册
首页|期刊导航|计算机技术与发展|基于多尺度残差增强网络的DEM超分辨率重建

基于多尺度残差增强网络的DEM超分辨率重建

韩超 张晓滨

计算机技术与发展2025,Vol.35Issue(3):9-17,9.
计算机技术与发展2025,Vol.35Issue(3):9-17,9.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0319

基于多尺度残差增强网络的DEM超分辨率重建

DEM Super-resolution Reconstruction Based on Multi-scale Residual Enhancement Network

韩超 1张晓滨1

作者信息

  • 1. 西安工程大学 计算机科学学院,陕西 西安 710699
  • 折叠

摘要

Abstract

Digital Elevation Models(DEMs)are considered one of the most important foundational geographic data models,with widespread applications in hydrological analysis,path planning,and modeling.However,the high cost of acquiring large-area,high-resolution DEM data with more precise sensors poses a challenge for many geographic analysis applications.Combining multi-scale features,residual learning,and multi-scale channel attention mechanisms,we propose a digital elevation model super-resolution reconstruction method based on a Multi-Scale Residual Multi-Channel Attention Enhancement Network.The Multi-Scale Residual Multi-Channel Attention Enhancement Module(MRCAEM)utilizes a combination of convolutional layers with multiple different kernel sizes,and through the multi-scale channel attention mechanism,it better captures semantic information at different scales,refines multi-scale feature extraction,and reconstructs more realistic high-resolution DEMs through feature fusion and reconstruction modules.Experimental results show that the proposed method reduces the Root Mean Square Error(RMSE)by approximately 2%~30%compared to other methods.

关键词

数字高程模型/超分辨率重建/多尺度/残差融合网络/多尺度通道注意力/可变形卷积

Key words

digital elevation model/super-resolution reconstruction/multi-scale/residual fusion network/multi-scale channel attention/deformable convolution

分类

信息技术与安全科学

引用本文复制引用

韩超,张晓滨..基于多尺度残差增强网络的DEM超分辨率重建[J].计算机技术与发展,2025,35(3):9-17,9.

基金项目

陕西省自然科学基础研究计划项目(2023-JC-YB-568) (2023-JC-YB-568)

计算机技术与发展

1673-629X

访问量0
|
下载量0
段落导航相关论文