| 注册
首页|期刊导航|计算机技术与发展|基于大语言模型的查询扩展方法研究

基于大语言模型的查询扩展方法研究

王海涛 师杨坤

计算机技术与发展2025,Vol.35Issue(3):148-155,8.
计算机技术与发展2025,Vol.35Issue(3):148-155,8.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0353

基于大语言模型的查询扩展方法研究

Research on Query Extension Method Based on Large Language Model

王海涛 1师杨坤1

作者信息

  • 1. 河南理工大学 计算机科学与技术学院,河南 焦作 454003
  • 折叠

摘要

Abstract

Retrieval Augmented Generation(RAG)has proven effective in mitigating issues of hallucinations in traditional large language models(LLMs)and addressing challenges related to real-time knowledge processing.However,existing methods still face limitations in terms of retrieval precision and recall.To address these limitations,we propose a novel query-rewriting approach,Query2Query,aimed at deeper feature extraction from query statements to enhance semantic alignment between user inputs and knowledge base content.This ap-proach conceptualizes LLMs as generative agents,utilizing their generative capacity to rewrite users'original queries based on predefined prompts.Specifically,we introduce the TAO(Task-Action-Objective)prompting framework,which structures prompts along the dimensions of task,action,and objective.Furthermore,we leverage the"What""How"and"Why"interrogatives to perform a structured rewrite of users'original queries,enriching the semantic depth of the query and covering a broader range of potentially relevant information.This enriched rewriting process significantly enhances retrieval accuracy.The final model output is treated as relevance-weighted documents,which combined with the original query,is fed into a generation model to produce the final output.Evaluations on the TERC DL'19 and TERC DL'20 datasets demonstrate that this framework improves both precision and recall in retrieval tasks.

关键词

检索增强生成/大语言模型/查询扩展/特征提取/提示词

Key words

retrieval augmented generation/large language model/query extension/feature extraction/prompts

分类

计算机与自动化

引用本文复制引用

王海涛,师杨坤..基于大语言模型的查询扩展方法研究[J].计算机技术与发展,2025,35(3):148-155,8.

计算机技术与发展

1673-629X

访问量0
|
下载量0
段落导航相关论文