| 注册
首页|期刊导航|西安电子科技大学学报(自然科学版)|时间二维变化建模的网络流量多步预测方法

时间二维变化建模的网络流量多步预测方法

宋文超 杨帆 邢泽华 张钰杰

西安电子科技大学学报(自然科学版)2025,Vol.52Issue(1):22-36,15.
西安电子科技大学学报(自然科学版)2025,Vol.52Issue(1):22-36,15.DOI:10.19665/j.issn1001-2400.20241014

时间二维变化建模的网络流量多步预测方法

Multi-step prediction method for network traffic based on temporal 2D-variation modeling

宋文超 1杨帆 1邢泽华 1张钰杰1

作者信息

  • 1. 西安电子科技大学 通信工程学院,陕西 西安 710071
  • 折叠

摘要

Abstract

Accurate prediction of network traffic variations can help operators allocate resources and schedule in advance,thus minimizing network congestion.Existing multi-step prediction methods for network traffic struggle to capture the long-range dependencies in traffic sequences,resulting in a low accuracy in multi-step prediction tasks.In response,a novel method using time two-dimensional-variation modeling for multi-step network traffic prediction is proposed which first encodes the network traffic sequence using Gated Recurrent Units(GRUs)to accurately represent the temporal correlations of network traffic and then reconstructs the traffic based on its periodic characteristics,transforming the one-dimensional traffic sequence into two dimensions.The reconstructed traffic sequence has a compressed length and more concentrated features,enabling the model to effectively perceive its long-range dependencies.Finally,a novel convolutional neural network captures the two-dimensional features of the reconstructed traffic sequence and performs weighted fusion to produce the final prediction results.Simulation results show that compared to mainstream multi-step network traffic prediction methods,the proposed method reduces the root mean square error by at least 8.69%,mean absolute error by at least 8.96%,and the mean absolute percentage error by at least 11.73%.Experimental results demonstrate that the proposed method can effectively mine long-range dependencies in network traffic,achieving a higher accuracy in multi-step traffic prediction tasks.

关键词

预测/网络管理/流量预测/时间二维变化建模

Key words

forecasting/network management/traffic prediction/temporal 2D-variation modeling

分类

计算机与自动化

引用本文复制引用

宋文超,杨帆,邢泽华,张钰杰..时间二维变化建模的网络流量多步预测方法[J].西安电子科技大学学报(自然科学版),2025,52(1):22-36,15.

基金项目

国家重点研发计划(2020YFB1805600) (2020YFB1805600)

西安电子科技大学学报(自然科学版)

OA北大核心

1001-2400

访问量0
|
下载量0
段落导航相关论文